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Forword

ISO (The International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards
are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for
voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting
a vote.

International Standard 24610, Part 1 was prepared by Technical Committee ISO/TC 37, Terminology and Other
Language Resources (principles and coordination), Subcommittee SC 4, Language Resource Management.
ISO 24610, Part 1 is designed to coordinate closely with Part 2 Feature System Declaration. All the Annexes
are are for information only.
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Introduction

This standard proposal results from the agreement between the Text Encoding Initiative Consortium and the
ISO committee TC 37/SC 4 that a joint activity should take place to revise the two existing chapters on Feature
Structures and Feature System Declaration in The TEI Guidelines called P4. This work should lead to both a
thorough revision of the guidelines and the production of an ISO standard on Feature Structure Representation
and Feature System Declaration.

This standard is organized in two separate main parts. The present document, constituting Part One of ISO
24610, is dedicated to the description of what feature structures are, providing an informal and yet explicit out-
line of their basic characteristics, as well as an XML-based structured way of representing feature structures.
This preliminary task is designed to lay a basis for constructing an XML-based reference format for exchanging
feature structures between applications. The second part of ISO 24610, will provide an implementation standard
for XML-based feature structures, first by formulating constraints on a set of features and a set of their appro-
priate values and then by introducing a set of wellformedness conditions on feature structures for particular
applications, especially related to the goal of language resource management.

Vi © I1SO 2004 — All rights reserved
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Language Resource Management — Feature Structures —
Part 1: Feature Structure Representation

1 Scope

Feature structures are an essential part of many linguistic formalisms as well as an underlying mechanism
for representing the information consumed or produced by and for language engineering applications. This
international standard provides a format to represent, store or exchange feature structures in natural language
applications, for both annotation and production of linguistic data. It is ultimately designed to provide a computer
format to describe the constraints that bear on a set of features, feature values, feature specifications and
operations on feature structures, thus offering means to check the conformance of each feature structure with
regards to a reference specification.

2 Normative References

There are four main normative references for the current International Standard:

— The TE | Guidelines, Text-Encoding Initiative Consortium.

— Bray, Tim, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler (eds.), extensible Markup Language
(XML), 1.0 (Second edition), World Wide Web Consortium (W3C) Recommendation, October 6, 2000.
(Referenced in ISO 16642 and available at http://www.w3.0rg/TR/1998/REC-xml-19980210).

— IS0 8879: 1986 (SGML) as extended by TC2 (ISO/IEC JTC 1/SC 34 N029: 1998-12-06) to allow for XML.
— 1SO 19757-2, Document Schema Definition Language, part 2.

3 Terms and Definitions

3.1

alternation

operation on feature values that returns one and only one value

NOTE Given a feature specification F : a | b, where a | b denotes the alternation of @ and b, F has either the value
a or the value b, but not both.

3.2
atomic value
value that has no internal feature specifications

3.3

boxed label

label used in a matrix notation to denote structure sharing

NOTE The index is generally marked with an integer, but it can be any alpha-numeric symbol that can be used
as a coreferential index.

© IS0 2004 — All rights reserved 1



34

collection

list, set or multiset of values

NOTE A list is an ordered collection of entities some of which may be identical, whereas a set or a multiset is an
unordered collection of entities. These two differ from each other in that identical entities may not occur in a set,
but may occur in a multiset. A multiset may some times be referred to as a bag.

35
complex value
value represented either as a feature structure or as collection

3.6

concatenation

operation that combines two lists of values into a single list
NOTE The equivalent operation for sets and multisets is union.

3.7
empty feature structure
feature structure containing no feature specifications

3.8

feature

property of an entity

NOTE When provided with a value, it constitutes a feature specification, for example “number” is a feature, a pair
“number singular" is a feature specification, “singular" is a value.

3.9

feature specification

assignment of a value to a feature

NOTE Formally, it is treated as a pair of a feature and its value.

3.10

feature structure

set of feature specifications

NOTE The minimum feature structure is the empty feature structure

3.11

graph notation

notation that uses a single rooted graph with a finite sequence of labelled and directed arcs to represent feature
structures

NOTE The name of each node including the root represents a type, the label of each arc a feature, and the name
of the terminating node of each arc a value.

3.12

incompatibility

relation between two feature structures which have at least one common feature with a conflicting value

NOTE Two feature structures that are not incompatible can be unified. The empty feature structure is com-
patible with any other feature structure.

3.13

matrix notation

attribute-value matrix

AVM

notation that uses square brackets to represent feature structures

NOTE In a matrix notation, each row represents a feature specification, separated by a colon (:), space () or
the equality sign (=).

3.14

2 © 1SO 2004 — All rights reserved



negation

(unary) operation on a value denoting any other value incompatible with it

NOTE In this standard, negation applies to values only and is not understood as a truth function as in ordinary
bivalent logics.

3.15

path

sequence of arc labels in the graph notation originating from the root node

NOTE The notion of path can be extended in the same manner to the matrix notation. If the graph consists only
of the root node, then the sequence is null, thus forming a null path. A path can also be partial, by forming a
sequence from the root to a given node.

3.16

structure sharing

re-entrancy

relation between two or more features within a feature structure that share a value
NOTE Sharing can be reciprocal, but fails to apply if it would result in incompatibility.

3.17

subsumption

relationship between two feature structures in which one is more specific than the other

NOTE A feature structure A is said to subsume a feature structure B if A is not more informative than B. Sub-
sumption is a reflexive, anti-symmetric and transitive relation between two feature structures.

3.18

type

class of entities

NOTE Primitive entities that features take as their value are considered types, too, namely unit classes consist-
ing of themselves. For example, words can be sorted into types such as ‘verbs’, ‘nouns’, ‘adjectives’, and so
on.

3.19

typed feature structure

feature structure sorted into a type which is labelled by the name of the type

NOTE In the graph notation, each node is labeled with the name of a type. In the matrix notation, a type name
is ordinarily placed at the upper left corner of the inside of the pair of square brackets that represents a typed
feature structure.

3.20

unification

operation that combines two compatible feature structures into one

NOTE Feature structures can be unified only if they do not have an incompatibility. Feature structures carry
partial information and, by unification, their information is incremented.

3.21

union

operation that combines two sets, or multisets, into one
NOTE The equivalent operation for lists is concatenation.

3.22

value

information about an entity

NOTE There are two types of feature values: atomic value and complex value.
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4 General Characteristics of Feature Structure
4.1 Overview

A feature structure is a general-purpose data structure that identifies and groups together individual features
by assigning a particular value to each. Because of the generality of feature structures, they can be used
to represent many different kinds of information. Interrelations among various pieces of information and their
instantiation in markup provide a metalanguage for representing linguistic content analysis and interpretation.
Moreover, this instantiation allows a specification of a set of features with values of specific types and restrictions,
by means of feature system declarations, or other XML mechanisms discussed in the second part of ISO 24610.

4.2 Use of Feature Structures

Feature structures provide partial information about some objects by specifying values for some or all of its
features. For example, if we are describing a female employee named Sandy Jones who is 30 years old, we can
talk about that person’s sex, name and age in a succinct manner by assigning a value to each of these three
features. These pieces of information can be put into a simple set notation, as in:

(1) Employee
{<SEX, female>, <NAME, Sandy Jones>, <AGE, 30>}

The use of feature structures can easily be extended to linguistic descriptions. The phoneme /p/ in English, for
instance, can be analyzed in terms of its distinctive features: consonantal, anterior, voiceless, non-continuant
or stop sound segment, etc. By using the Boolean values plus(+) and minus(-), these features can be listed as
a set consisting of feature/value pairs, where the value of a feature specifies the presence or absence of that
feature:

(2) Sound segment /p/
{<CONSONANTAL, + >, <ANTERIOR, + >, <VOICED, - >, <CONTINUANT, - >}

As aresult, the sound segment /p/ can be distinguished from other phonemes in terms of presence or absence of
specific features. For example, /p/ differs from the phoneme /b/ in VOICING, and from /k/ in articulatory position:
one is articulated at the anterior, namely lip or alveolar area of the mouth, and the other at the non-anterior,
namely the back of the oral cavity.

This feature analysis can be extended to the description of other linguistic entities or structures. Consider a verb
like ‘love’. lts features can be divided into syntactic and semantic properties: as a transitive verb, it takes an
object as well as a subject as its arguments, expressing the semantic relation of loving between two persons or
animate beings. The exact representation of these feature specifications requires a detailed elaboration of what
feature structures are. For now, we can roughly represent these grammatical features in a set format like the
following:

(3) Grammatical features of the verb ‘love’
{<POS, verb>, <VALENCE, transitive>, <SEMANTIC_RELATION, loving>}

Since its first extensive use in generative phonology in mid-60’s, a feature structure has become an essential
tool not only for phonology, but also for doing syntax and semantics as well as lexicon building, especially in
computational work. Feature structures are used to describe and model linguistic entities and phenomena by
specifying their properties. In the next sections, we outline some of the formal properties of feature structures
together with means to represent them in a systematic manner.

4.3 Basic Concepts

Feature structures may be viewed in a variety of ways. The most common and perhaps the most intuitive views
are the following:

4 © 1SO 2004 — All rights reserved



— (i) a set of feature specifications that consists of pairs of features and their values

— (ii) labelled directed graphs with a single root where each arc is labelled with the name of a feature and
directed to its value.

In set-theoretic terms, a feature structure S can be defined as a partial function from a set Feat of features
to a set FeatVal of values, where FeatVal consists of a set AtomVal of atomic values and a set FS of feature
structures.

(4) A feature structure as a set or partial function

FS C{< F;,v; > |F; € Feat,v; € FeatVal}
or

FS : Feat — FeatVal,

where FeatVal = AtomVal U FS.

where featval stands for all possible values. Values may be regarded as either atomic or complex. Atomic values
are entities without internal structure, while complex values may be feature structures or collections of values
(either complex or atomic).

For example, the part of speech feature ( POS) can take the name of an atomic morpho-syntactic category such
as verb as its value. Conversely, the agreement feature AGR in English takes a complex value in the form of a
feature structure with features PERSON and NUMBER. The word ‘loves’, for instance, has a POS feature with the
value verb, while the value of its AGR feature consists of a feature structure comprising two feature specifications:
PERSON with value 3rd, and NUMBER with value singular.

4.4 Notations

As a list of feature-value pairs, the overall form of a feature structure is simple. However, the internal structure
of a feature structure may be complex when a feature structure contains either (1) a feature whose value is itself
a feature structure or (2) a multivalued feature whose value is a list, set or multi-set. Lists, sets, and multi-sets
may be made up of atomic values, or they may include complex values that are themselves feature structures.
That is, feature structures allow limitless recursive embedding. It is therefore necessary to represent them in an
understandable, mathematically precise notation.

Three notations are commonly used to represent features structures: (1) graphs, (2) matrixes, and (3) an XML-
based notation. In the following subsections, we discuss how the same feature structure may be represented
using each of these equivalent notations. Graphs are suitable for mathematical discourses, matrices for linguistic
descriptions, and XML notations for computational implementation.

4.4.1 Graph Notation

For conceptual coherence and mathematical elegance, feature structures are often represented as labelled
directed graphs with a single root."

Each graph starts with a single particular node called the root. From this root, any number of arcs may branch
out to other nodes and then some of them may terminate or extend to other nodes. The extension of directed
arcs must, however, stop at some terminal nodes. On such a graph which is representing a feature structure,
each arc is labelled with a feature name and its directed node, labelled with its value.

Here is a very simple example for a directed graph representing a feature structure.

1) This graph can be either (1) acyclic, in which case they are referred to as directed acyclic graphs (DAG) or (2)cyclic for handling cases
like the Liar’s paradox.
Feature structures are usually represented as DAGs; but it has been suggested that cyclical feature structures should be introduced to
model some linguistic phenomena.

© I1SO 2004 — All rights reserved 5



(5) Feature structure in graph notation
value,

FEATURE33 Value32

In this graph, the two features FEATURE; and FEATURE, are atomic-valued, taking value; and value, on the
terminal nodes respectively as their value. The feature FEATURE; is, however, complex-valued, for it takes as its
value the feature structure which is represented by the two arcs FEATURE3;; and FEATURE3; with their respective
values, values; and values;.

A graph may just consist of the root node only, that is, without any branching arcs. Such a graph represents the
empty feature structure.

>From the root, more than one arcs may branch out and each of them forms a sequence of feature names of
length 1. Here, each sequence consists of a single feature name. Some of these labelled arcs originating from
the root may again stretch out to another node and then from this node to another, forming an indefinitely long
sequence of feature names. Such a sequence of feature names, labelling the arcs from the unique root node
to each of the terminal nodes on a graph, is called path. For example, there are four paths in (5): FEATURE],
FEATURE,, FEATURE3.FEATURE3; and FEATURE3;.FEATURE3;.

Here is a linguistically more relevant example.

(6) Linguistic example in graph notation
‘love’

ORTH nos verb

SYNTAX \
VALENC transtive

This graph consists of three paths: ORTH, SYNTAX.POS, and SYNTAX.VALENCE. The path consisting of a single
feature name ORTH is directed to the terminal node ‘love’, which is an atomic value. The path SYNTAX.POS
terminates with the atomic value verb and the path SYNTAX.VALENCE with the atomic value transitive. The
non-terminal feature SYNTAX takes a complex value, namely a feature structure consisting of the two feature
specifications, <POS, verb> and <VALENCE, transitive>.

4.4.2 Matrix Notation

Despite its mathematical elegance, graphs cause problems of typesetting and readability when they get com-
plex. To remedy some of these problems, feature structures are more often depicted in a matrix notation called
attribute-value matrix, or simply Avm.?)

(7) Matrix notation

2) The term ‘feature’ is sometimes called attribute.

6 © IS0 2004 - All rights reserved



[FEATURE; value,
FEATURE; value;

FEATURE3; valuesy

FEATURE3; value
FEATURE3 32 32

FEATURE3y values;

FEATURE, value,

Each row in the square bracket with a FEATURE name followed by its value name represents a feature specifi-
cation in a feature structure.®) Feature values can be either atomic or complex. Each row with an atomic value
terminates at that value. But if the value is complex, then that row leads to another feature structure, as in the
case of FEATURE; above.

The notion of path is also important in the AvM notation for its applications that will be discussed presently. A
path in an AVM is a sequence of feature names, as is the case with feature structure graphs. If an AvM has no
row and thus no occurrences of features, being represented as [ ], such an AvVM represents the empty feature
structure and only has the empty path of length 0. But if an AvM has at least one row consisting of a feature
name and its value, then there is a path of length 1 corresponding to each occurrence of a feature name in
each row. Given a path of length i, if the last member of that path takes a nonempty feature structure as value,
then that path forms a new path of length i + 1 by taking each one of the features in that feature structure as its
member.

For illustration, consider the following AvM which represents the same feature structure as is represented by the
graph notation (6).

(8) Example of an AvM notation

ORTH ‘love’

POS verb ]

SYNTAX .
VALENCE fransitive

This AVM has three paths: ORTH, SYNTAX.POS and SYNTAX.VALENCE.

4.4.3 XML-based Notation

Like any other formalism, XML has its own terminology, which we have used in the remainder of this section.
An XML document consists of typed elements, occurrences of which are marked by start- and end- tags which
enclose the content of the element. Element occurrences can also carry named attributes, (or, more exactly,
attribute-value pairs). For example:

(9) <word class="noun">love</word>

This is the XML way of representing an occurrence of the element word, the content of which is the string “love".
The word element is defined as having an attribute called class, whose value in this case is the string “noun”.

The term attribute is thus used in a way which potentially clashes with its traditional usage in discussions of
feature structures. The acronym AvVM, used in the preceding section, stands for Attribute-Value Matrix: in this
method, feature structures are represented in a square bracket form, with each row representing an attribute-
value pair. In this usage, an attribute does not correspond necessarily to an XML attribute as we show below,

3) A colon, an equality sign or a space separates a feature from its value on each row of an Avm.

© IS0 2004 — All rights reserved 7



the same information may be conveyed in many different ways. To avoid this potential source of confusion, the
reader should be aware that in the remainder of this section we will use the term attribute only in its technical
XML sense.

To illustrate further the distinction, we now consider how a feature structure in AvM may be represented in XML.
Consider the following AvM that represents a non-typed feature structure:

(10) Representation of a feature structure in AVM

ORTH love
POS noun

This feature structure consists of two feature specifications: one is a pair of a feature ORTH and its value love
and the other, a pair of a feature POs and its value noun. 4

The basic structure to be represented in XML is that we have an element called a feature structure, consisting
of two feature specifications. We could use the generic names fs and f for these elements:

(11) <fs>
<f>...</f>
<f>...</f>

</fs>

This is a more generic approach than another, equally plausible, representation, in which we might represent
each feature specification by a specifically-named element:

(12) <fs>
<orth>...</orth>
<pos>...</pos>

</fs>

Using this more generic approach means that systems can be developed which are independent of the particular
feature set, at the expense of slightly complicating the representation in any particular case. By representing
the specification of a feature as an f element, rather than regarding each specific feature as a different element
type simplifies the overall processing model considerably.

Feature specification, as we have seen, has two components: a name, and a value. Again, there are several
equally valid ways of representing this pair in XML. We could, for example, choose any of the following three:

(13) (a) <f name="pos" value="noun"/>

(b) <f name="pos">
<value>noun</value>
</f>

(c) <f>
<name>pos</name>
<value>noun</value>
</f>

4) Note incidentally that this representation says nothing about the range of possible values for the two features: in particular, it does not
indicate that the range of possible values for the ORTH feature is not constrained, whereas (at least in principle) the range of possible
values for the POs feature is likely to be constrained to one of a small set of valid POS codes. In a constraint-based grammar formalism,
possible values for the feature ORTH must be strings consisting of a finite number of characters drawn from a well-defined character
set, say the Roman Alphabet plus some special characters, for each particular language.

8 © IS0 2004 - All rights reserved



The fact that all three of these are possible arises from a redundancy introduced in the design of the XML
language (largely for historical reasons which need not concern us: see further [ref to be supplied]) by its
support for attributes (in the XML sense!). As currently formulated, the present recommendation is to use a
formulation like (b) above, though (c) may be preferable on the grounds of its greater simplicity.

Finally, we consider the representation of the value part of a feature specification. A name is simply a name, but
a value in the system discussed here may be of many different types: it might for example be an arbitrary string,
one of a predefined set of codes, a Boolean value, or a reference to another (nested) feature structure. In the
interests of greater expressivity, the present system proposes to distinguish amongst these kinds of value in the
XML representation itself.

Once more, there are a number of more or less equivalent ways of doing this. For example:

(14) (a) <fs>
<f name="orth">
<value type="string">love</value>
</f>
<f name="pos">
<value type="symbol">noun</value>
</f>
</fs>

(b) <fs>
<f name="orth"><string>love</string></f>
<f name="pos"><symbol value="noun"/></f>
</fs>

The number of possible different value types is comparatively small, and the advantages of handling values
generically rather than specifically seem less persuasive. The approach currently taken is therefore to define
different element types for the different kinds of value (for example, string to enclose a string, symbol to denote
a symbol, binary to denote a binary value, fs to denote a nested feature structure).

Representing feature structures in XML notation is thus possible and rather straightforward, although a fuller im-
plementation might involve various problems and possibilities. For example, the feature structure in the following
shows a way to represent the same feature structure given in (6) and (8) in the above.

(15) Feature structure in XML notation

<fs>
<f name="orth"><string>love</string></f>
<f name="syntax">
<fs>
<f name="pos"><symbol value="verb"/></f>
<f name="valence"><symbol value="transitive"/></f>
</fs>
</f>
</fs>

The feature structure in XML notation is surrounded in <fs> tags, and each specification of its features with <f>
tags. Note that despite the apparent difference between the representations (6), (8) and (15), the information
contained in each structure corresponds quite systematically with that in other structures. For example, arc
labels in graph notation like ORTH and SYNTAX are now represented by <f> tags with appropriate names.%

5) A detailed discussion including ways to simplify the representation in (15) will be provided in Section 5.
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4.5 Structure Sharing

A feature structure representation may need to represent shared components. For example, in representing the
structure of a noun phrase which includes an article (“la pomme") it may be desired to show that the feature
“number” is shared between the article and the noun. This sharing can be directly represented in the graphic
notation as follows:

(16) Merging paths in graph notation

determiner
POS
ORTH “a’
SPECIFIE
— NUMBER————singular
HEAD ;

Here, the two SPECIFIER.AGR and HEAD.AGR paths merge on the node NUMBER, indicating that they share one
and the same feature structure as their value.

In AVM notation, structure sharing is represented by providing a boxed integer label at the point where structures
are shared, as in the following example:

(17) Structure sharing in AvM notation

POS determiner

SPECIFIER |ORTH la
AGR [1] |NUMBER singular

POS noun
HEAD |ORTH ‘pomme’
AGR [1]

In a similar way, in the XML notation a special element var is used to name the sharing point. It supplies a label
for the point which can then be referenced elsewhere in the structure, as in the following example:

(18) Structure sharing in XML notation

<fs>
<f name="specifier">
<fs>
<f name="agr">
<var label="nl">
<fs>
<f name="number"><symbol value="singular"/></f>
</fs>
</var>
</f>
<f name="pos"><symbol value="determiner"/></f>
</fs>
</f>

<f name="head">
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<fs>
<f name="agr"><var label="nl"/></f>
<f name="pos"><symbol value="noun"/></f>
</fs>
</f>
</fs>

Re-entrancy is symmetric and there is no distinguished representative among the different occurrences of a
shared node. In particular, this implies that a value may be attached to any or all occurrences of a shared label:

(19) Specifying shared values

<fs>
<f name="specifier">
<fs>
<f name="agr">
<var label="nl">
<fs>
<f name="number"><symbol value="singular"/></f>
</fs>
</var>
</f>
<f name="pos"><symbol value="determiner"/></f>
</fs>
</f>
<f name="head">
<fs>
<f name="agr">
<var label="nl">
<fs>
<f name="number"><symbol value="singular"/></f>
</fs>
</var>
</f>
<f name="pos"><symbol value="noun"/></f>
</fs>
</f>
</fs>

A particularly significant case of structure sharing arises when the aim is to express that two features have the
same value, even thought that value is not known or is underspecified.

4.6 Collections as Complex Feature Values

In feature-based grammar formalisms, such as HPSG and LFG, multivalued features, taking collections as their
values, are very common. Collections may be organized as lists, sets, or multisets (also known as bags).The
items in a list are ordered, and need not be distinct. The items in a set are not ordered, and must be distinct. The
items in a bag are neither ordered nor distinct. Sets and bags are thus distinguished from lists in that the order
in which the values are specified does not matter for the former, but does matter for the latter, while sets are
distinguished from bags and lists in that repetitions of values do not count for the former but do count for the latter.

Collections of any kind can be represented directly in both AVM and XML notations. There is however no
theoretical consensus on how they should be represented using graph notation.
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4.6.1 Lists as Feature Values

A well-known example of a list-valued feature is the SUBCAT feature in HPSG. It is used to describe the kind of a
grammatical subject and objects that a verb expects (“subcategorizes for”). For example, to represent that the
English verb form ‘gives’ as used in structures like ‘John gives Mary a kiss’ expects a nominative noun phrase
as the subject, a dative noun phrase as its indirect object, and an accusative noun phrase as the direct object,
and expects these elements in this order, the feature SUBCAT is given the value:

(20) SUBCAT as a list-valued feature
POS noun POS noun POS noun
SUBCAT TR B )
CASE nominative| | CASE dative| | CASE accusative

Here, each of the nouns may carry a label in the form of a boxed integer to indicate structure sharing with the
arguments of a predicate that expresses the semantics of a verb.

The AVM representation 20 can be represented in XML by introducing a special element vcoll and an attribute
org whose value is either a list, a set or a multiset, as below:

(21) Representing the value of SUBCAT as a list

<fs>
<f name="subcat">
<vcoll org="list">
<fs>
<f name="pos"><symbol value="noun"></f>
<f name="case"><symbol value="nominative"></f>
</fs>
<fs>
<f name="pos"><symbol value="noun"></f>
<f name="case"><symbol value="dative"></f>
</fs>
<fs>
<f name="pos"><symbol value="noun"></f>
<f name="case"><symbol value="accusative"></f>
</fs>
</vcoll>
</f>
</fs>

Note that a list as a feature value may contain either atomic or complex values, as shown above.

Note that list values can also be represented recursively as in this example:

(22) Recursive representation
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FIRST a

F FIRST b
REST
REST null

FIRST [A a}

G nest |FIRST {Bb}

REST null

The recursive interpretation of a list given in 22 can also be represented in XML.

(23) Recursive representation of a list in XML

<fs>
<f name="F">
<fs>
<f name="first"><symbol value="a"></f>
<f name="rest">
<fs>
<f name="first"><symbol value="b"></f>
<f name="rest"><symbol value="null"></f>
</fs>
</f>
</fs>
</f>
<f name="G">
<fs>
<f name="first">
<fs>
<f name="A"><symbol value="a"></f>
</fs>
<f name="rest">
<fs>
<f name="first">
<fs>
<f name="B"><symbol value="b"></f>
</fs>
<f name="rest"><symbol value="null"></f>
</fs>
</f>
</fs>
</f>
</fs>

According to this recursive representation, lists as feature values may be viewed as a shorthand notation for
representing recursively built complex feature structures.

4.6.2 Sets as Feature Values
Features taking sets as their values are frequently used to represent grammatical features of languages like

Japanese, Korean or German, in which word order is free or semi-free. For instance, the subject and the verbal
complements in a sentence have no fixed order.®) Hence, for these languages, the feature COMPS as well as

6) There have been some controversies among practicing linguists concerning the validity of presenting semi-free or free word order as
supporting evidence for the introduction of sets as feature values.
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the feature ARG-ST may be treated as taking a set, not a list of complements or arguments as its value. For the
German equivalent of ‘gives’, the verb form ‘gibt’, we would have the following:

(24) Set-valued features

ORTH ‘gibt’
POS verb
POS noun POS noun POS noun
SUBCAT R . A
CASE nominative|’ | CASE dative| | CASE accusative

The AVM representation in 24 can be represented in XML in an equivalent manner.

(25) Set-valued features in XML

<fs>
<f name="orth"><string>gibt</string></f>
<f name="pos"><symbol value="verb></f>
<f name="subcat">
<vcoll org="set">
<fs>
<f name="pos"><symbol value="noun"></f>
<f name="case"><symbol value="nominative"></f>
</fs>
<fs>
<f name="pos"><symbol value="noun"></f>
<f name="case"><symbol value="dative"></f>
</fs>
<fs>
<f name="pos"><symbol value="noun"></f>
<f name="case"><symbol value="accusative"></f>
</fs>
</vcoll>
</f>
</fs>

Unlike lists, sets may not be defined recursively.

4.6.3 Multisets as Feature Values

For completeness, we include the possibility of multiset-valued features, although there are few applications for
them. The set-valued feature SLASH in HPSG, for instance, is used for dealing with wh-movement and other
extraction-like phenomena, where the values of SLASH contains the (properties of the) extracted gaps and these
gaps can at times be identical.

For illustration, consider the following example:

(26) Coreferential pronouns
John;_, is an idiot. But he; thinks he; is smart.

The two occurrences of the pronouns above are coreferential. A multiset value might be used to represent this
coreference as follows:
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(27) Coreferential multiset

{. | POS pronoun POS pronoun | ...}
PERSON 3rd PERSON 3rd
NUMBER sing |’ | NUMBER sing
GENDER masc| |GENDER masc

An XML representation equivalent to 27 can be given as below:

(28) Representing coreferential multiset in XML

<vcoll org="multiset">
<fs>
<f name="pos"><symbol value="pronoun"></f>
<f name="person"><symbol value="3rd"></f>
<f name="number"><symbol value="singular"></f>
<f name="gender"><symbol value="masc"></f>
</fs>
<fs>
<f name="pos"><symbol value="pronoun"></f>
<f name="person"><symbol value="3rd"></f>
<f name="number"><symbol value="singular"></f>
<f name="gender"><symbol value="masc"></f>
</fs>
</vcoll>

Unlike lists, multisets cannot be defined recursively.

4.7 Typed Feature Structure

In many recent grammar formalisms, the typed feature structure has become a major component of linguistic
description.

4.7.1 Types

Elements of a domain can be sorted into classes called types in a structured way, based on commonalities of
their properties. Usually, one or other of the features of a non-typed feature structure can be identified which
groups commonly co-occurring features. Linguistic entities such as phrase, word, pos (part of speech), noun,
and verb which might be treated as features of a non-typed feature structure, could be taken as a type in a typed
feature structure.

By typing, a feature structure it becomes possible to constrain its content. A feature structure of the type noun,

for instance, would not allow a feature like TENSE in it or a specification of its feature CASE with a value of the
type feminine.”)

4.7.2 Notations

The typing of feature structures can easily be treated in our notations. A graph for a typed feature structure will
have the following form:

7) Note that atomic feature values are considered types, too.
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(29) Typed feature structure in graph notation

FEATURE3:

The only difference between the typed graph (29) and the non-typed graph (5) is that each of the two nodes has
been assigned a type: one is of type0 and the other of type30.

Corresponding to the non-typed AvM (8), here is a typed AvM:

(30) Typed feature structure in AVM notation

word
ORTH ‘love’

verb
SYNTAX .
VALENCE transitive

Here, the entire AVM is assigned the type word, whereas the inner AvM is assigned the type verb. Unlike the
non-typed (8), this typed AvM carries the additional piece of information that features ORTH and SYNTAX are of
type word and the feature VALENCE is of type verb.

The same information can be represented in an XML notation, as below:

(31) Typed feature structure in XML notation

<fs type="word">
<f name="orth"><string>love</string></f>
<f name="syntax">
<fs type="verb">
<f name="valence"><symbol value="transitive"/></f>
</fs>
</f>
</fs>

Note here that the line <f name="pos"><sym value="verb"/></f> in the embedded feature structure <fs> has
been replaced by typing that <fs> as in <fs type="verb">.

The use of type may also increase the expressive power of a graph notation. On the typed graph notation, for
instance, multi- values can be represented as terminating nodes branching out of the node labelled with the type
set, multiset or list. This node in turn is a terminating node of the arc labelled with a multivalued feature, say
SLASH. Each arc branching out of the multivalued node, say set, is then labelled with a feature appropriate to

the type.

(32) Set-valued feature SLASH in graph notation
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The features like MEMBER; and MEMBER; here should be considered appropriate for the type set.

4.8 Subsumption: Relation on Feature Structures

The primary goal in constructing feature structures is thus to capture and represent partial information. No
feature structure is expected to represent the total information describing all possible worlds or states of affairs.
It may be of greater interest and value to focus on particular aspects of interesting situations and capture various
sorts of related information. The relation of subsumption on feature structures is thus introduced to be able to
tell which feature structure carries more information than the others.

Some feature structures carry less information than others. The extreme case, perhaps the most uninteresting
case, is the empty feature structure [ ] sometimes called variable that carries no information at all. For more
interesting cases, consider the following two feature structures:

(33) a. -WOI’O'_St
ORTH ‘loves’

b. [word_st
ORTH ‘loves’

verb_st
N -
FORM finite

The feature structure (a) says that the word is a string consisting of 5 letters spelled as ‘I-0-v-e-s’ and that’s all.
But the feature structure (b) says more than that by providing the additional information that it is a finite verb.
Hence, (a) is said to be less informative than (b).

To describe such a relation among some feature structures, a technical term is introduced that is called sub-
sumption. In the above case, (a) is said to subsume (b).

4.8.1 Definition

Intuitively speaking, a feature structure A subsumes a feature structure B if A is not more informative than B, thus
subsuming all feature structures that are at least equally informative as itself. Since it carries no information,
the empty feature structure [ ] subsumes not only the feature structures (a) and (b), but also any other feature
structures including itself. More strictly speaking, the subsumption relation is a partial ordering over feature
structures and is defined as follows:®)

(34) Definition of Subsumption
Given two typed feature structures, FS; and FS,, FS; is said to subsume FS,,
written as A C B if and only if the following conditions hold:

A. Path values Every path P which exists in FS| with a value of type t also exists in FS, with a value which
is either t or one of its subtypes.
B. Path equivalences Every two paths which are shared in FS; are also shared in F'S.

C. Type ordering Every type assigned by FS; to a path subsumes the type assigned to the same path in
FS, in the type ordering.

Each of the three conditions A, B, and C can be illustrated as below:

8) Carpenter (1992: 43) claims that the subsumption relation is a pre-ordering on the collection of feature structures. It is transitive and
reflexive, but not anti-symmetric because it is possible to have two distinct feature structures that mutually subsume each other. But
these are alphabetic variants.
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4.8.2 Condition A on Path Values

(35) Example satisfying Condition A

verb_st C _verb_st |
AGR [agr—cat ] agr-cat
A NUMBER singular AGR |PERSON 3rd
NUMBER singular
B _TENSE present |

There is only one path in A: <AGR.NUMBER>. This path exists in B and their values are the same.®) Hence,
Condition A is satisfied. Condition B is inapplicable here, since there is no structure sharing in either of the two
feature structures. Condition C is satisfied because every type assigned by A to a path is identical with the type
assigned to the same path in B. Hence, A subsumes B.

4.8.3 Condition B on Structure Sharing

(36) Case satisfying Condition B

syn-cat L |syn-cat
VALENCE |SPECIFIER <[1] NP > ’ verb_st
COMPS < > FORM finite
A |ARG-ST <[> | val-cat
VALENCE |SPECIFIER <[1] NP >
COMPS < >
g ARG-ST <[1]>

This example looks a bit complicated. But one can easily check that the structure sharing tagged by [1 ]in A also
exists in B and the other two conditions are also satisfied. Hence, this subsumption relation holds here.

Consider the following pair of examples related to the structure sharing condition:

(37) Another case involving structure sharing

[word
[ syn-cat 1
noun_st
HEAD AGR agr-cat
PERSON 3rd
SYN
val-cat
noun
VALENCE
SPECIFIER < agr-cat
A >
PERSON 3rd
cL - 4

C

9) The labels like A and B in the lower left corner of each AVM here is not part of the feature structure being represented itself. They are
there merely to refer to each AvM for the convenience of our present discussions only.

18 © 1SO 2004 — All rights reserved



[word st
s yn-cat
noun_st

HEAD agr-cat ]

AGR
.[PERSON 3rd

SYN
val-cat
VALENCE

SPECIFIER <| 00 |5
AGR [
pL L 4

Here, C subsumes D because it satisfies Condition A and C, while Condition B is not relevant. On the other
hand, D does not subsume C because Condition B applies here and is violated.

4.8.4 Condition C on Type Ordering
This condition applies only to typed feature structures under the assumption of some kind of type inheritance
hierarchy assumed. Pronouns, proper nouns, and common nouns are subtypes of the supertype noun. Hence,

all these subtypes share some properties of each being a noun. Thus, the following is a simple example of
subsumption:

(38) Case involving type ordering

noun_st C —name_st
ORTH ‘Mary’ ORTH: ‘Mary’
PERSON 3rd PERSON 3rd
NUMBER singular AGR: | NUMBER singular
B GENDER feminine

where noun T name

Since the type noun_st of A is a supertype of the type name of B, A subsumes B. Furthermore, B has an extra
piece of information about the gender. Hence, A properly subsumes B.

4.9 Operations on Feature Structures and Feature Values

As a corollary to subsumption, unification is the main topic of this section. Feature structures are generally
unified to augment the amount of information content. Generalization is its dual: two feature structures are
generalized to select identical feature specifications and put them into one general feature structure. In addition
to these operations on feature structures, some operations on feature values or types like the concatenation &
of list values, alternative feature values and conjunctive types will also be topics of this section.

4.9.1 Compatibility

Some feature structures are compatible with some others, while there are conflicting cases. Consider the
following three AvMm’s:'?)

(39) a. |noun_st

AGR [PERSON 3rd]
A

10) Type labels like syn-cat, val-cat and agr-cat are not very informative, so they will be omitted from now on.
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b. [noun st

NUM singular
AGR .
GENDER feminine

BL
c. [noun st

a PERSON 3rd
GENDER masculine

CcL

The feature structure A is compatible with B and also with C. But the feature structures B and C are incompatible
because their specification of the feature gender is conflicting: one has the value feminine and the other the
value masculine.

Incompatibility may also arise when there is a type difference, as shown below:

(40) Incompatible feature structures

a. [noun st

[PERSON 3rd
AGR .
NUMBER singular
EL L 4]
b. _verb_st

[PERSON 3rd

AGR .
NUMBER singular
FL L 4

The feature structures E and F both have the same agreement feature specifications, but these two feature
structures are incompatible because they belong to two different types which are not in a subsumption relation.

4.9.2 Unification

Compatible feature structures often represent different aspects of information from different sources. Merged
together, they may convey a more coherent picture of information. This process of information merge is captured
by the operational process of unifying two compatible feature structures, FS; and FS,, represented FS; LI FS;.
Compatible feature structures can be unified together to form a more (or at least equally) informative feature
structure. The unification of two typed feature structures FS; and F'S, is the most informative typed feature
structure which is subsumed by both FS; and FS,, if it exists."")

(41) Formal definition of unification
The unification of F; U F, of two typed feature structures F; and F, is the least upper bound of F; and F, in
the collection of typed feature structures ordered by subsumption.

It should be noted here that the type hierarchy is constructed with the most non-specific or the least informative
type at the bottom, which is represented as 1.2

The feature structure A, for instance, can be unified with C, yielding a little bit more enriched feature structure D.

11) Formally speaking, the unification of two incompatible feature structures results in inconsistency and may just be represented with some
inconsistency symbol like T without calling into the procedural aspect of its failure. With this symbol, unification may be treated as a
total operation that always yields a result even with the inconsistency T.

12) Ifthe type hierarchy is depicted with the most general or non-specific type at the top T, then the unification of two typed feature structures
FS) and FS, must be defined as the greatest lower bound of FS; and FS, in the type hierarchy and should also be represented as
FS|MFS, as in Copestake (2002).
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(42) Unified feature structure
noun_st
NUMER singular
AGR |PERSON 3rd

GENDER masculine
D

Unification normally adds information as illustrated just now. But identical features unify without adding any
further information. The empty feature structure may be unified with every feature structure without changing
the content of the latter, thus formally treated as the identity element of unification.

(43) Basic properties of unification

— Unification adds information.

— Unification is idempotent: the unification of identical feature structures remains the same without
anything added.

— The empty structure is the identity element for unification: it adds nothing to the resulting feature
structure.

Unification may thus be considered an analogue of the set-theoretic union. Hence, they are usually represented
in the same symbol, L.

4.9.3 Unification of Shared Structures

The operation of unification gets complicated when it involves shared structures. Consider the following exam-
ple:

(44) Unification involving re-entrancy

verb_st U | verb st

AGR AGR |PERSON 3rd
noun_st] H

SPECIFIER <
[AGRE

G

= |verb_st

AGR m[PERSON 3rd}

SPECIFIER < roun_st
AGRI[]

/

The unification of feature structures G and H results in a feature structure 1. This unification involves structure
sharing. Here, the AGREE value of H in the first path is simply unified with the AGREE value of G occurring in the
first path which is tagged with [1]. Furthermore, on the assumption that the type verb is a subtype of the type
agr-pos, the resulting feature structure I becomes of the type verb.

Consider a bit more complicated case:

(45) Case for pumping values to each other
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verb_st L _agr-pos

AGR AGR [PERSON 3rd]
noun_st
SPECIFIER < - noun_st
AGRI SPECIFIER < , >
G AGR [NUMBER smgular}
JL i
= [verb_st i
PERSON 3rd
AGR .
NUMBER singular

AGR[1]

noun_st
SPECIFIER < >

K L
As before, the two occurrences of the path AGR in G and J are unified, yielding the first path as in K. Another
pair of the two occurrences of the path SPECIFIER.AGR are also unified. As a result, this path in K shares the

value with the path AGR as is marked with | 1 | and then its original value can be transferred to the place where
the index | 1] first has occurred, namely in the path AGR.

4.10 Operations on Feature Values and Types
4.10.1 Concatenation and Union operations

A list as a feature value may be appended to anther list by concatenation @. In HPSG, the value of argument
structure ARG-ST is treated as the concatenation of the SPECIFIER and COMPS value lists.

(46) Concatenated list

verb_st

SPECIFIER [4]
COMPS [B]

ARG_ST [A] & [B]

VALENCE[

Here, variable lists are tagged with boxed uppercase Latin characters. Hence, the value of ARG_ST should be
understood as the concatenation of two lists.

The similar operation of combining the members of two sets or multisets is known as union. These operations
are theoretically possible, but it is hard to find some examples in linguistic descriptions.
In the XML notation, we use the same element to represent both concatenation and union:

The example 46 can be represented in XML with a special purpose element vcoll.

(47) Representing a list of values in XML

<fs type="verb_st>
<f name="valence>
<fs>
<f name="specifier">
<var label="nA"></var>
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</f>
<f name="comps">
<var label="nB"></var>
</f>
</fs>
</f>
<f name="arg_st">
<vcoll org="list">
<var label="nA"></var>
<var label="nBR"></var>
</vcoll>
</f>
</fs>

4.10.2 Alternation

Some features may take an alternative value.'® For example, the word ‘Sandy’ can be either feminine or
masculine, but not neuter. Hence, the value of its gender can be specified with the vertical bar ‘|’ as follows.

(48) Alternative value

word
ORTH ‘Sandy’
GENDER feminine | masculine

Many cases that require an alternative feature value can be handled just by underspecifying or omitting feature
specifications. But in the above example, it is not possible. If there were only two possible values for the gender
in English, one could have just skipped specifying the value of the gender. Since there is a third value, namely
neuter, for the English gender, one cannot but specify the value, which is still an alternative value.

Alternation can also be systematically represented by XML by introducing a special purpose element <vAlt>.
(49) Representing Alternative value in XML

<fs type="word">
<f name="orth">
<string>Sandy</string>
</f>
<f name="gender">
<vAlt>
<symbol value="feminine"></symbol>
<symbol value="masculine"></symbol>
</vAlt>
</f>
</fs>

The curly brackets { } are often used to represent the alternation of feature values, especially when it is in the
form of a full-blown feature structure. The following is an abstract and yet simple example:

13) Strictly speaking, this alternation differs from the Boolean disjunction, or the inclusive disjunction, often represented by a wedge V,
which results in truth if and only if one of its disjuncts is true. Alternation here, however, allows the choice of only one value. Hence, the
mathematical characterization of feature structure as a function still remains valid. The same is true with those cases in which features
have collections like lists, sets or multisets as values, for they are not allowed to have more than one multi-values as their values.

© 1SO 2004 — All rights reserved 23



(50) Alternative feature structures as feature value

o]

(B

Here the value of the feature B is specified with an alternative value, which consists of two feature structures.
Set feature values are also represented by the pair of curly brackets. Hence, the use of curly brackets for repre-
senting alternation may be confusing. So the use of curly brackets for alternation is better avoided.

4.10.3 Negation

The notion of negation is either truth-functional or set-theoretic. In Boolean bivalent logic, negation is a truth
function that returns the opposite value to a value: it assigns truth to falsity and vice versa. According to its
set-theoretic notion, on the other hand, the negation of a value which is a member of some set A is understood
as being some value in the complement ; of that value set.

In the current standard, negation applies only to the value of a feature in a feature structure and is understood
more or less in a set-theoretic sense. If the value of a feature is atomic, then its negation is a member in
the complement of the admissible value set to which that value belongs. suppose the value set has only two
members. Then, negation picks up the value opposite to a given value. For example, if the feature number is
singular or plural, then the negation of singular is plural and the negation of plural singular. But suppose the
admissible value set of the feature Gender has more than two values: masculine, feminine and neuter. Then,
the negation of the value masculine is one of the other two values in the complement set {feminine, neuter},
namely either feminine or neuter.

The value of a feature can, however, be complex. It can be a feature structure. In this case, the negation of a
feature structure, say F, which is the value of some feature, is any of the feature structures that are incompatible
with that feature structure F. Given a feature structure that has a single feature specification ‘FEATUREO : valueO,
then its negation is a set of feature structures each of which contains at least one feature specification such that
‘FEATUREOQ : —value0)’.

Here is an illustration:

(51) Negation of a Complex Feature Value

noun

AGR: ﬁ[Person: third ]

Number: singular

This feature structure carries the information about some noun that has an agreement feature specification other
than that of a third person singular noun. Such a noun in English, for instance, does not have to undergo the
Subject-Verb agreement as in ‘Mia snores’ opposed to the ill-formed sentence ‘Mia snore’. Suppose we have:

(52) Incompatible Feature Structures

a. [noun

AGR: [Person: third ]

Number: singular
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b. |noun

AGR: Person: flrgt
Number: singular

These two are incompatible and (a) can be considered to be a particular instance of the negation of the AGR
value of (b).

Negation can also be represented by XML with a special element <vNot>. Here is an example:
(53) Representing negation in XML

<fs type="noun">
<f name="ARG">
<vNot>
<fs>
<f name="Person">
<symbol value="third"></symbol>
</f>
<f name="Number">
<symbol value="singular"></symbol>
</f>
</fs>
</vNot>
</f>
</fs>

This representation is equivalent to the AVM representation (51) just given above.

4.11 Informal Semantics of Feature Structure

Semantically, a feature structure is a partial characterization of an object. It is a specification of a number of
properties, where a property is described by specifying the value of a feature. For instance, an object is (partly)
characterized as a plural noun by specifying that the feature POS (part-of-speech) has the value noun and the
value NUM (number) has the value plural.

A common way to express this mathematically is by using the so-called lambda operator, which is a device for
defining functions. For example, the meaning of the feature structure

(54) [POS noun
NUM plural

can be expressed using the lambda-operator as:
(55) Ax: pos(x) = noun A num(x) = plural

The part of the expression that follows the initial ‘Ax :’ part, is called the body of the expression. Formally, such an
expression defines a function that is applicable to the kind of object that x stands for, and that delivers the value
that is obtained by substituting a specific argument for the variable x everywhere in the body and evaluating the
body. For instance, applied to the argument house, the expression Ax : pos(x) = noun A num(x) = sing delivers the
value false, since pos(house) = noun but num(x) # plural, hence the conjunction is false.
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A functions which has true and false as its values, like the function defined by (55), is in fact a one-place predicate:
if its application to an object yields true, the object in question has the property expressed by the predicate; if
it yields false, it doesn’t. The lambda-expression (55) represents a complex predicate formed by conjoining the
predicate of having part-of-speech noun with the predicate of having number plural. Lambda-expressions are
commonly used in mathematics, in formal logic, and in natural language semantics, and have a well-established
model-theoretic interpretation; hence a translation of feature structures into lambda-expressions can be used
as a semantics of feature structures. For a formal account of the semantics of feature structures see Annex C.

Generally speaking, the meaning of a single feature specification [A: v] is the simple predicate (or ‘property’)
of having the value v for the feature A, and the meaning of a (more complex) feature structure is the complex
predicate formed by conjoining the simple predicates corresponding to the feature specifications in the FS,
taking into account feature nestings and the negations, alternations, and collections of values that may occur in
the feature values. Example (56), involving alternation, negation and a set-valued feature, illustrates this. This
feature structure partly describes a phrase of which the head daughter is a noun of which the number feature is
either singular or mass, which is not inanimate, and which takes prepositional objects using the preposition of or
by. This is formally expressed by the lambda-expression (57), where ‘hdtr’ stands for ‘head daughter’. Note that,
since alternation in a feature value specification expresses a choice between mutually exclusive alternatives,
the corresponding predicate contains an ‘exclusive or’, denoted by the symbol V. (An exclusive or construction,
like pV ¢, can be seen as an abbreviation of (pVg) A ~(pAg).)

(56) [Pos noun

POS noun
NUMBER (singular|mass)
HDTR | GENDER not(inanimate)

PREPOBS {of, by}

(57) Ax: pos(x) = noun A pos(hdtr(x)) = noun
A (number(hdtr(x)) = singular N number(hdtr(x)) = plural)
N—(gender(hdtr(x)) = neuter) A prepobs(hdtr(x)) = {“of”,“by”}

A complication in describing the meaning of feature structures is formed by the phenomenon of re-entrancy.
Re-entrancy can take three different forms, differing in the amount of information in the values of the features
that share their values. Let a FS contain two features A and B that share their values. (The case of more than
two features sharing their values is an easy generalization of this.) The following cases may arise:

a) neither A nor B has a value specified;
b) A has no value specified; B has a value specified;

¢) A and B both have a value specified.

The first case is illustrated in its simplest possible form by (58):

(58) |A[1]
Bl1]

This says that the features A and B have the same value, whatever that value may be (or may become later in
the course of a process in which the feature structure is involved). Hence it corresponds to the predicate (59):

(59) Ax:A(x) = B(x)
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The second case corresponds in its simplest possible form to a feature structure like (60):

(60) |A[1]
Bv

Again, the structure sharing means that the features involved should have the same value, so the predicate
corresponding to the FS again contains the stipulation (59). Moreover, the FS also says that B has the value v;
hence altogether this FS corresponds to the predicate (61):

(61) Ax:A(x) =B(x) AB(x)=v

Note that, since it is a logical consequence of A(x) = B(x) and B(x) = v that A(x) = v, the latter condition does not
need to be included in (61).

The case of one of the shared feature values being specified and the other unspecified, as illustrated by (60), is
in fact a special case of the more general third case, which takes the simplest possible form (62):

(62) |A[1]v1
Bv2

If vl and v2 in this FS are different atomic values, then the FS expresses an impossible situation and is mean-
ingless. But if vl and v2 are complex values, than something meaningful may be expressed if these values are
compatible. This is in particular the case if vl and v2 are feature structures that can be unified. Other possible
cases arise through the use of negation or alternation, since the use of these operators corresponds to not re-
ally specifying a value of a feature, but specifying contraints on the values of the feature. For instance, suppose
vl =a and v2 = a|b, where a and b are atomic values; in that case the shared value is in fact a. Similarly if vl =a
and v2 = —b.

Structure sharing can of course be combined with the use of complex values. This is illustrated in example (63),
where sharing occurs with a complex value that includes an alternation.

(63) [ [POS det

SPEC " .
AGR {G ENDER (femmme|mascu|me)]

[POS noun
HEAD
AGR [NUMBER plural}

Semantically, this feature structure characterises those phrases consisting of a determiner which has feminine
or masculine gender and a plural noun, as expressed by the predicate (64):

(64) Ax: pos(spec(x)) = det
A agr(spec(x)) = agr(head(x))
A (gender(agr(spec(x))) = feminine V.
(gender(agr(spec(x))) = masculine)
A pos(head(x)) = noun
A num(agr(spec(x))) = plural

© 1SO 2004 — All rights reserved 27



5 XML-Representation of Feature Structures

This section describes a standard for the representation of feature structures using XML, the eXtensible Markup
Language, which has been officially recommended by the World Wide Web Consortium w3cC as a document-
processing standard for interchanging data especially over the Internet. XML provides a rich, well-defined and
platform-independent markup language for all varieties of electronic document.

5.1 Overview

This section is organized as follows. Following this overview, section 5.2 Elementary Feature Structures and the
Binary Feature Value introduces the elements <fs> and <£>, used to represent feature structures and features
respectively, together with the elementary binary feature value.

Section 5.3 Other Atomic Feature Values introduces elements for representing other kinds of atomic feature
values such as symbolic, numeric, and string values.

Section 5.4 Feature and Feature-Value Libraries introduces the notion of predefined libraries or groups of fea-
tures or feature values along with methods for referencing their components.

Section 5.5 Feature Structures as Complex Feature Values introduces complex values, in particular feature-
structures as values, thus enabling feature structures to be recursively defined. Section 5.6 Re-entrant Feature
Structures treats structure sharing in feature structures.

Section 5.7 Collections as Complex Feature Values discusses other complex values, in particular values which
are collections, organized as sets, bags, and lists.

Section 5.8 Feature Value Expressions discusses how the operations of alternation, negation, and collection of
feature values may be represented.

Section 5.9 Default Values discusses ways of representing underspecified, default, or uncertain values.
Section 5.10 Linking Text and Analysis discusses how analyses may be linked to other parts of an encoded text.

Formal definitions for all the elements introduced in this section are provided in Annex A Formal Definition and
Implementation of Feature Structures in XLM.

5.2 Elementary Feature Structures and the Binary Feature Value

The fundamental elements used to represent a feature structure analysis are <£> (for feature), which represents
a feature-value pair, and <fs> (for feature structure), which represents a structure made up of such feature-value
pairs. The <fs> element has an optional type attribute which may be used to represent typed feature structures,
and may contain any number of <f> elements. An <f> element has a required name attribute and an associated
value. The value may be simple: that is, a single binary, numeric, symbolic (i.e. taken from a restricted set of
legal values), or string value, or a collection of such values, organized in various ways, for example, as a list; or
it may be complex, that is, it may itself be a feature structure, thus providing a degree of recursion. Values may
be under-specified or defaulted in various ways. These possibilities are all described in more detail in this and
the following sections.

Feature and feature-value representations (including feature structure representations) may be embedded di-
rectly at any point in an XML document, or they may be collected together in special-purpose feature or feature-
value libraries. The components of such libraries may then be referenced from other feature or feature-value
representations, using the feats or fVal attribute as appropriate.

We begin by considering the simple case of a feature structure which contains binary-valued features only. The
following three XML elements are needed to represent such a feature structure:

(65)
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— <fs> represents a feature structure, that is, a collection of feature-value pairs organized as a structural
unit. Selected attributes:

type specifies the type of the feature structure.
feats references the feature-value specifications making up this feature structure.
— <f> represents a feature value specification, that is, the association of a name with a value of any of several
different types. Selected attributes:
name provides a name for the feature.
fVval references any element which can be used to represent the value of a feature.

— <binarys represents the value part of a feature-value specification which can contain either of exactly two
possible values.

value supplies a binary value (true or false, plus or minus).

The attributes feats and the fVal are not discussed in this section: they provide an alternative way of indicating
the content of an element, as further discussed in section 5.4 Feature and Feature-Value Libraries.

An <fs> element containing <f> elements with binary values can be straightforwardly used to encode the
matrices of feature-value specifications for phonetic segments, such as the following for the English segment
[S]_14)

(66)

[consonantal +]
vocalic -
voiced -
anterior +
coronal +
continuant +

| strident +

This representation may be encoded in XML as follows:

(67)

<fs type="phonological segments">
<f name="consonantal">
<binary value="true"/>
</f>

<f name="vocalic">
<binary value="false"/>
</f>

<f name="voiced">
<binary value="false"/>
</f>

<f name="anterior">
<binary value="true"/>
</f>

<f name="coronal">

14) Adapted from Noam Chomsky and Morris Halle (1968: 415).
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<binary value="true"/>
</ f>
<f name="continuant">
<binary value="true"/>
</f>
<f name="strident">
<binary value="true"/>
</ f>
</fs>

Note that <£s> elements may have an optional fype attribute to indicate the kind of feature structure in question,
whereas <£> elements must have a name attribute to indicate the name of the feature. Feature structures need
not be typed, but features must be named. Similarly, the <fs> element may be empty, but the <£> element
must have (or reference) some content.

The restriction of specific features to specific types of values (e.g. the restriction of the feature “strident"to
a binary value) requires additional validation, as does any restriction on the features available within a fea-
ture structure of a particular type (e.g. whether a feature structure of type “phonological segment" necessarily
contains a feature “voiced". Such validation may be carried out at the document level, using special purpose
processing, at the schema level using additional validation rules, or at the declarative level, using an additional
mechanism such as the feature-system declaration discussed in chapter FD of the TEI Guidelines.

Although we have used the term binary for this kind of value, and its representation in XML uses values such as
true and false (or, equivalently, 1 and 0), it should be noted that such values are not restricted to propositional
assertions. As this example shows, this kind of value is intended for use with any binary-valued feature.

Formal declarations for the <fs>, <£> and <binary> elements are provided below in Annex A Formal Definition
and Implementation.

5.3 Other Atomic Feature Values

Features may take other kinds of atomic value. In this section, we define elements which may be used to
represent: symbolic values, numeric values, and string values. The module defined by this chapter allows for
the specification of additional datatypes if necessary, by extending the underlying class class.singleValue. If this
is done, it is recommended that only the basic W3C datatypes should be used; more complex datatyping should
be represented as feature structures.

(68)

— <symbol> represents the value part of a feature-value specification which contains one of a finite list of
symbols. Selected attributes:

value supplies the symbolic value for the feature, one of a finite list that may be specified in a feature
declaration.

— <numeric> represents the value part of a feature-value specification which contains a numeric value or
range.

value supplies a lower bound for the numeric value represented, and also (if max is not supplied) its upper
bound.

max supplies an upper bound for the numeric value represented.
trunc specifies whether the value represented should be truncated to give an integer value.

— <string> represents the value part of a feature-value specification which contains a string.

x No attributes other than those globally available (see definition for tei.global.attributes)
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The <symbol> element is used for the value of a feature when that feature can have any of a small, finite set of
possible values, representable as character strings. For example, the following might be used to represent the
claim that the Latin noun form “mensas"(tables) has accusative case, feminine gender and plural number:

(69)

<fs>
<f name="case">
<symbol value="accusative"/>
</f>
<f name="gender">
<symbol value="feminine"/>
</f>
<f name="number">
<symbol value="plural"/>
</f>
</fs>

More formally, this representation shows a structure in which three features (case, gender and number) are
used to define morpho-syntactic properties of a word. Each of these features can take one of a small number
of values (for example, case can be nominative, genitive, dative, accusative etc.) and it is therefore
appropriate to represent the values taken in this instance as <symbol> elements. Note that, instead of using
a symbolic value for grammatical number, one could have named the feature singular or plural and given it an
appropriate binary value, as in the following example:

(70)

<fs>
<f name="case">
<symbol value="accusative"/>
</f>
<f name="gender">
<symbol value="feminine"/>
</f>
<f name="singular">
<binary value="false"/>
</f>
</fs>

Whether one uses a binary or symbolic value in situations like this is largely a matter of taste.

The <string> element is used for the value of a feature when that value is a string drawn from a very large or
potentially unbounded set of possible strings of characters, so that it would be impractical or impossible to use
the <symbol> element. The string value is expressed as the content of the <st ring> element, rather than as
an attribute value. For example, one might encode a street address as follows:

(71)

<fs>
<f name="address">
<string>3418 East Third Street</string>
</f>
</fs>

© 1SO 2004 — All rights reserved 31



The <numeric> element is used when the value of a feature is a numeric value, or a range of such values.
For example, one might wish to regard the house number and the street name as different features, using an
encoding like the following:

(72)

<fs>
<f name="houseNumber">
<numeric value="3418"/>
</f>
<f name="streetName">
<string>East Third Street</string>
</ f>
</fs>

If the numeric value to be represented falls within a specific range (for example an address that spans several
numbers), the max attribute may be used to supply an upper limit:

(73)

<fs>

<f name="houseNumber">

<numeric value="3418" max="3440"/>
</ f>

<f name="streetName">

<string>East Third Street</string>
</f>
</fs>

It is also possible to specify that the numeric value (or values) represented should (or should not) be truncated.
For example, assuming that the daily rainfall in mm is a feature of interest for some address, one might represent
this by an encoding like the following:

(74)

<fs>
<f name="dailyRainFall">
<numeric value="0.0" max="1.3" trunc="no"/>
</f>
</fs>

This represents any of the infinite number of numeric values falling between 0 and 1.3; by contrast

(75)

<fs>
<f name="dailyRainFall">
<numeric value="0.0" max="1.3" trunc="yes"/>
</f>
</fs>
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represents only two possible values: 0 and 1.

As noted above, additional processing is necessary to ensure that appropriate values are supplied for par-
ticular features, for example to ensure that the feature singular is not given a value such as <symbol
value="feminine"/>. There are two ways of attempting to ensure that only certain combinations of fea-
ture names and values are used. First, if the total number of legal combinations is relatively small, one can
predefine all of them in a construct known as a feature library, and then reference the combination required us-
ing the feats attribute in the enclosing <fs> element, rather then give it explicitly. This method is suitable in the
situation described above, since it requires specifying a total of only ten (5 + 3 + 2) combinations of features and
values. Similarly, to ensure that only feature structures containing valid combinations of feature values are used,
one can put definitions for all valid feature structures inside a feature value library (so called, since a feature
structure may be the value of a feature). A total of 30 feature structures (5 x 3 x 2) is required to enumerate all
the possible combinations of individual case, gender and number values in the preceding illustration. We dis-
cuss the use of such libraries and their representation in XML further in section 5.4 Feature and Feature-Value
Libraries below.

However, the most general method of attempting to ensure that only legal combinations of feature names and
values are used is to provide a feature-system declaration discussed in chapter FD of the TEI Guidelines.

5.4 Feature and Feature-Value Libraries

As the examples in the preceding section suggest, the direct encoding of feature structures can be verbose.
Moreover, it is often the case that particular feature-value combinations, or feature structures composed of them,
are re-used in different analyses. To reduce the size and complexity of the task of encoding feature structures,
one may use the feats attribute of the <£s> element to point to one or more of the feature-value specifications for
that element. This indirect method of encoding feature structures presumes that the <£> elements are assigned
unique id values, and are collected together in <fL.ib> elements (feature libraries). In the same way, feature
values of whatever type can be collected together in <fvLib> elements (feature-value libraries). If a feature
has as its value a feature structure or other value which is predefined in this way, the fVal attribute may be used
to point to it, as discussed in the next section. The following elements are used for representing feature, and
feature-value libraries:

(76)

— <fLib> assembles library of feature elements.
+ No attributes other than those globally available (see definition for tei.global.attributes)
— <fvLib> assembles a library of reusable feature value elements (including complete feature structures).

type indicates type of feature-value library (i.e., what type of feature values it contains).

For example, suppose a feature library for phonological feature specifications is set up as follows.

(77)

<fLib n="phonological features">
<f id="CNS1" name="consonantal">
<binary value="true"/>

</f>

<f 1id="CNSO" name="consonantal">
<binary value="false"/>

</f>

<f id="VOC1l" name="vocalic">
<binary value="true"/>
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</ f>

<f i1id="VOCO0" name="vocalic">
<binary value="false"/>

</f>

<f id="VOI1l" name="voiced">
<binary value="true"/>

</ f>

<f id="VOIO" name="voiced">
<binary value="false"/>

</f>

<f id="ANT1" name="anterior">
<binary value="true"/>

</ f>

<f id="ANTO" name="anterior">
<binary value="false"/>

</f>

<f id="COR1" name="coronal">
<binary value="true"/>

</ f>

<f id="CORO" name="coronal">
<binary value="false"/>

</f>

<f id="CNT1" name="continuant">
<binary value="true"/>

</f>

<f id="CNTO" name="continuant">
<binary value="false"/>

</ f>

<f id="STR1" name="strident">
<binary value="true"/>

</f>

<f id="STRO" name="strident">
<binary value="false"/>
</f><l— .. ——>

</fLib>

Then the feature structures that represent the analysis of the phonological segments (phonemes) /t/, /d/,
/s/,and /z/ may be defined as follows.

(78)

<fs feats="CNS1 VOCO VOIO ANT1 COR1 CNTO STRO"/>
<fs feats="CNS1l VOCO VOI1l ANT1 COR1 CNTO STRO"/>
<fs feats="CNS1 VOCO VOIO0 ANT1 COR1 CNT1 STR1"/>
<fs feats="CNS1 VOCO VOI1l ANT1 COR1l CNT1 STR1"/>

The preceding are but four of the 128 logically possible fully specified phonological segments using the seven
binary features listed in the feature library. Presumably not all combinations of features correspond to phono-
logical segments (there are no strident vowels, for example). The legal combinations, however, can be collected
together, each one represented as an identifiable <fs> element within a feature-value library, as in the following
example:

(79)
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<fvLib id="fsll" n="phonological segment definitions"><!-- ... —-—>

<fs 1d="T.DF" feats="CNS1 VOCO VOIO ANT1 COR1 CNTO STRO"/>

<fs 1d="D.DF" feats="CNS1 VOCO VOI1l ANT1 COR1l CNTO STRO"/>

<fs i1d="S.DF" feats="CNS1 VOCO VOIO ANT1l COR1l CNT1 STR1"/>

<fs 1d="Z.DF" feats="CNS1 VOCO VOI1l ANT1 COR1 CNT1l STR1"/><!—— ... ——>
</fvLib>

Once defined, these feature structure values can also be reused. Other <£> elements may invoke them by
reference, using the fVal attribute; for example, one might use them in a feature value pair such as:

(80)

<f n="dental-fricative" fval="T.DF"/>

rather than expanding the hierarchy of the component phonological features explicitly.

Feature structures stored in this way may also be associated with the text which they are intended to annotate,
either by a link from the text (for example, using the TEI global ana attribute), or by means of standoff annotation
techniques (for example, using the TEI <1ink> element): see further section 5.10 Linking Text and Analysis
below.

Note that when features or feature structures are linked to in this way, the result is effectively a copy of the
item linked to into the place from which it is linked. This form of linking should be distinguished from the
phenomenon of structure-sharing, where it is desired to indicate that some part of an annotation structure
appears simultaneously in two or more places within the structure. This kind of annotation should be represented
using the <vLabel> element, as discussed in section 5.6 Re-entrant feature structures below.

5.5 Feature Structures as Complex Feature Values

Features may have complex values as well as atomic ones; the simplest such complex value is represented by
supplying a <fs> element as the content of an <f> element, or (equivalently) by supplying the identifier of an
<fs> element as the value for the fVal attribute on the <f£> element. Structures may be nested as deeply as
appropriate, using this mechanism. For example, an <fs> element may contain or point to an <f> element,
which may contain or point to an <£s> element, which may contain or point to an <£> element, and so on.

To illustrate the use of complex values, consider the following simple model of a word, as a structure combining
surface form information, a syntactic category, and semantic information. Each word analysis is represented as
a <fs type=’word’ > element, containing three features named surface, syntax, and semantics. The
first of these has an atomic string value, but the other two have complex values, represented as nested feature
structures of types category and act respectively:

(81)

<fs type="word">
<f name="surface">
<string>love</string>
</f>
<f name="syntax">
<fs type="category">
<f name="pos">
<symbol value="verb"/>
</f>
<f name="val">
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<symbol value="transitive"/>
</f>
</fs>
</f>
<f name="semantics">
<fs type="act">
<f name="rel">
<symbol value="LOVE"/>
</f>
</fs>
</f>
</fs>

This analysis does not tell us much about the meaning of the symbols verb or transitive. It might be
preferable to replace these atomic feature values by feature structures. Suppose therefore that we maintain a
feature-value library for each of the major syntactic categories (N, V, ADJ, PREP):

(82)

<fvLib n="Major category definitions"><!-——- ... —-—>

<fs id="N" type="noun"><!-- noun features defined here -->
</fs>

<fs id="V" type="verb"><!-- verb features defined here -->
</fs>
</fvLib>

This library allows us to use shortcut codes (N, v etc.) to reference a complete definition for the corresponding
feature structure. Each definition may be explicitly contained within the <fs> element, as a number of <f>
elements. Alternatively, the relevant features may be referenced by their identifiers, supplied as the value of the
feats attribute, as in these examples:

(83)

<!-=— ... —=—><fs id="ADJ" type="adjective" feats="N1 V1"/>
<fs 1d="PREP" type="preposition" feats="NO VO"/><!-—— ... —-—>

This ability to re-use feature definitions within multiple feature structure definitions is an essential simplification
in any realistic example. In this case, we assume the existence of a feature library containing specifications for
the basic feature categories like the following:

(84)

<fLib type="categorial features">
<f id="N1" name="nominal">
<binary value="true"/>

</f>

<f id="NO" name="nominal">
<binary value="false"/>

</ f>

<f id="V1" name="verbal">
<binary value="true"/>
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</f>

<f id="VO0" name="verbal">
<binary value="false"/>

</f>S<l—— L0 —=>

</fLib>

With these libraries in place, and assuming the availability of similarly predefined feature structures for transitivity
and semantics, the preceding example could be considerably simplified:

(85)

<fs type="word">
<f name="surf">
<string>love</string>
</f>
<f name="syntax">
<fs type="category">
<f name="pos" fval="V"/>
<f name="val" fVval="TRNS"/>
</fs>
</f>
<f name="semantics">
<fs type="act">
<f name="rel" fVal="LOVE"/>
</fs>
</f>
</fs>

Although in principle the fVal attribute could point to any kind of feature value, its use is not recommended for
simple atomic values.

5.6 Re-entrant feature structures

Sometimes the same feature value is required at multiple places within a feature structure, in particular where
the value is only partially specified at one or more places. The <vLabel> element is provided as a means of
labelling each such re-entrancy point:

(86)
— <vlLabels represents the value part of a feature-value specification which appears at more than point in a
feature structure

name supplies a name for the sharing point.

For example, suppose one wishes to represent noun-verb agreement as a single feature structure. Within the
representation, the feature indicating (say) number appears more than once. To represent the fact that each
occurrence is another appearance of the same feature (rather than a copy) one could use an encoding like the
following:

(87)

© 1SO 2004 — All rights reserved 37



<fs id="NVA">
<f name="nominal">
<fs>
<f name="nm-num">
<vLabel label="L1">
<symbol value="singular"/>

</vLabel>
</f><!—— other nominal features —-->
</fs>
</f>
<f name="verbal">
<fs>

<f name="vb-num">
<vLabel label="L1"/>
</f>
</fs><!-- other verbal features -->
</f>
</fs>

In the above encoding, the features named vb-num and nm—-num exhibit structure sharing. Their values, given as
vLabel elements, are understood to be references to the same point in the feature structure, which is labelled
by their name attribute.

The scope of the names used to label re-entrancy points is that of the outermost <fs> element in which they
appear. When a feature structure is imported from a feature value library, or referenced from elsewhere (for
example by using the fVal attribute) the names of any sharing points it may contain are implicitly prefixed by the
identifier used for the imported feature structure, to avoid name clashes. Thus, if some other feature structure
were to reference the <£s> element given in the example above, for example in this way:

(88)

<f name="class" fval="NVA"/>

then the labelled points in the example would be interpreted as if they had the name NVAL1.
5.7 Collections as Complex Feature Values

Complex feature values need not always be represented as feature structures. Multiple values may also be
organized as as sets, bags (or multisets), or lists of atomic values of any type. The <co11> element is provided
to represent such cases:

(89)

— <coll> represents the value part of a feature-value specification which contains multiple values organized
as a set, bag, or list.
org indicates organization of given value or values as set, bag or list. Legal values are:

set indicates that the given values are organized as a set.
bag indicates that the given values are organized as a bag (multiset).
list indicates that the given values are organized as a list.

A feature whose value is regarded as a set, bag or list may have any positive number of values as its content,
or none at all, (thus allowing for representation of the empty set, bag or list). The items in a list are ordered, and
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need not be distinct. The items in a set are not ordered, and must be distinct. The items in a bag are neither
ordered nor distinct. Sets and bags are thus distinguished from lists in that the order in which the values are
specified does not matter for the former, but does matter for the latter, while sets are distinguished from bags
and lists in that repetitions of values do not count for the former but do count for the latter.

If no value is specified for the org attribute, the assumption is that the <col1> defines a list of values. If the
<coll> element is empty, the assumption is that it represents the null list, set, or bag.

To illustrate the use of the org attribute, suppose that a feature structure analysis is used to represent a ge-
nealogical tree, with the information about each individual treated as a single feature structure, like this:

(90)

<fs id="p027" type="person">
<f name="forenames">
<coll>
<string>Daniel</string>
<string>Edouard</string>
</coll>
</f>
<f name="mother" fVval="p002"/>
<f name="father" fval="p009"/>
<f name="birthDate">
<fs type="date" feats="y1988 m04 d17"/>
</f>
<f name="birthPlace" fVal="austintx"/>
<f name="siblings">
<coll org="set">
<fs copyOf="pnb005"/>
<fs copyOf="prb001"/>
</coll>
</f>
</fs>

In this example, the <col1> element is first used to supply a list of ‘name’ feature values, which together
constitute the ‘forenames’ feature. Other features are defined by reference to values which we assume are held
in some external feature value library (not shown here). For example, the <col1> element is used a second
time to indicate that the persons’s siblings should be regarded as constituting a set rather than a list. Each
sibling is represented by a feature structure: in this example, each feature structure is a copy of one specified in
the feature value library.

If a specific feature contains only a single feature structure as its value, the component features of which are
organized as a set, bag or list, it may be more convenient to represent the value as a <coll> rather than
as a <fs>. For example, consider the following encoding of the English verb form “sinks" which contains
an agreement feature whose value is a feature structure which contains person and number features with
symbolic values.

(91)

<fs type="word">

<f name="category">

<symbol value="verb"/>
</f>

<f name="tense">
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<symbol value="present"/>
</f>
<f name="agreement">
<fs>
<f name="person">
<symbol value="third"/>
</f>
<f name="number">
<symbol value="singular"/>
</f>
</fs>
</f>
</fs>

If the names of the features contained within the agreement feature structure are of no particular significance,
the following simpler representation may be used:

(92)

<fs type="word">
<f name="word.oddss">
<symbol value="verb"/>
</f>
<f name="tense">
<symbol value="present"/>
</f>
<f name="agreement">
<coll org="set">
<symbol value="third"/>
<symbol value="singular"/>
</coll>
</f>
</fs>

The <coll> element is also useful in cases where an analysis has several components. In the following
example, the French word “auxquels" has a two-part analysis, represented as a list of two values. The first
specifies that the word contains a preposition; the second that it contains a masculine plural relative pronoun:

(93)

<fs>
<f name="lex">
<symbol value="auxquels"/>
</f>
<f name="maf">
<coll org="list">
<fs>
<f name="cat">
<symbol value="prep"/>
</f>
</fs>
<fs>
<f name="cat">
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<symbol value="pronoun"/>
</f>
<f name="kind">
<symbol value="rel"/>
</f>
<f name="num">
<symbol value="pl"/>
</f>
<f name="gender">
<symbol value="masc"/>
</f>
</fs>
</coll>
</f>
</fs>

The set, bag or list which has no members is known as the null (or empty) set, bag or list. A <coll> element
with no content and with no value for its feats attribute is interpreted as referring to the null set, bag, or list,
depending on the value of its org attribute.

If, for example, the individual described by the feature structure with identifier p027 (above) had no siblings, we
might specify the “siblings" feature as follows.

(94)

<f name="siblings">
<coll org="set"/>
</f>

A <coll> element may also collect together one or more other <coll> elements, if, for example one of the
members of a set is itself a set, or if two lists are concatenated together. Note that such collections pay no
attention to the contents of the nested <col11> elements: if it is desired to produce the union of two sets, the
<vMerge> element discussed below should be used to make a new collection from the two sets.

5.8 Feature Value Expressions

It is sometimes desirable to express the value of a feature as the result of an operation over some other value
(for example, as ‘not green’, or as ‘male or female’, or as the concatenation of two collections). Three special
purpose elements are provided to represent disjunctive alternation, negation, and collection of values:

(95)

— <VAIt> represents the value part of a feature-value specification which contains a set of values, only one
of which can be valid.

+ No attributes other than those globally available (see definition for tei.global.attributes)
— <VvNot> represents a feature value which is the negation of its content.
+ No attributes other than those globally available (see definition for tei.global.attributes)

— <vMerge> represents a feature value which is the result of merging together the feature values contained
by its children, using the organization specified by the ORG attribute.

org indicates the organization of the resulting merged values as set, bag or list. Legal values are:
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set indicates that the resulting values are organized as a set.
bag indicates that the resulting values are organized as a bag (multiset).
list indicates that the resulting values are organized as a list.

5.8.1 Alternation

The <vAlt> element can be used wherever a feature value can appear. It contains two or more feature values,
any one of which is to be understood as the value required. Suppose, for example, that we are using a feature
system to describe residential property, using such features as aAYnumber.of.bathroomsaAZ. In a particular
case, we might wish to represent uncertainty as to whether a house has two or three bathrooms. As we have
already shown, one simple way to represent this would be with a numeric maximum:

(96)

<f name="number.of.bathrooms">
<numeric value="2" max="3"/>
</ f>

A better, and more general, way would be to represent the alternation explicitly, in this way:
(97)

<f name="number.of.bathrooms">
<vAlt>
<numeric value="2"/>
<numeric value="3"/>

</vAlt>

</f>

The <vaAlt> element represents alternation over feature values, not feature-value pairs. If therefore the uncer-
tainty relates to two or more feature value specifications, each must be represented as a feature structure, since
a feature structure can always appear where a value is required. For example, suppose that it is uncertain as to
whether the house being described has two bathrooms or two bedrooms, a structure like the following may be
used:

(98)

<f name="rooms">
<vAlt>
<fs>
<f name="number.of.bathrooms">
<numeric value="2"/>
</f>
</fs>
<fs>
<f name="number.of.bedrooms">
<numeric value="2"/>
</f>
</fs>
</vAlt>
</f>
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Note that alternation is always regarded as exclusive: in the case above, the implication is that having two
bathrooms excludes the possibility of having two bedrooms and vice versa. If inclusive alternation is required, a
<coll> element may be included in the alternation as follows:

(99)

<f name="rooms">
<vAlt>
<fs>
<f name="number.of.bathrooms">
<numeric value="2"/>
</f>
</fs>
<fs>
<f name="number.of.bedrooms">
<numeric value="2"/>
</f>
</fs>
<coll>
<fs>
<f name="number.of.bathrooms">
<numeric value="2"/>
</f>
</fs>
<fs>
<f name="number.of.bedrooms">
<numeric value="2"/>
</f>
</fs>
</coll>
</vAlt>
</f>

This analysis indicates that the property may have two bathrooms, two bedrooms, or both two bathrooms and
two bedrooms.

As the previous example shows, the <vAlt> element can also be used to indicate alternations among values
of features organized as sets, bags or lists. Suppose we use a feature selling.points to describe items that
are mentioned to enhance a property’s sales value, such as whether it has a pool or a good view. Now suppose
for a particular listing, the selling points include an alarm system and a good view, and either a pool or a jacuzzi
(but not both). This situation could be represented, using the <vaA1t> element, as follows.

(100)

<fs type="real estate listing">
<f name="selling.points">
<coll org="set">
<string>alarm system</string>
<string>good view</string>
<vAlt>
<string>pool</string>
<string>jacuzzi</string>
</vAlt>
</coll>
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</f>
</fs>

Now suppose the situation is like the preceding except that one is also uncertain whether the property has an
alarm system or a good view. This can be represented as follows.

(101)

<fs type="real estate listing">
<f name="selling.points">
<coll org="set">
<vAlt>
<string>alarm system</string>
<string>good view</string>
</vAlt>
<vAlt>
<string>pool</string>
<string>jacuzzi</string>
</vAlt>
</coll>
</ f>
</fs>

If a large number of ambiguities or uncertainties need to be represented, involving a relatively small number
of features and values, it is recommended that a stand-off technique, for example using the general-purpose
<alt> element discussed in TEI P5, be used, rather than the special-purpose <valt> element.

5.8.2 Negation

The <vNot > element can be used wherever a feature value can appear. It contains any feature value and returns
the complement of its contents. For example, the feature “number.of.bathrooms" in the following example has
any whole numeric value other than 2:

(102)

<f name="number.of.bathrooms">
<vNot>
<numeric value="2"/>
</vNot>
</f>

Strictly speaking, the effect of the <vNot> element is to provide the complement of the feature values it contains,
rather than their negation. If a feature system declaration is available which defines the possible values for the
associated feature, then it is possible to say more about the negated value. For example, suppose that the
available values for the feature case are declared to be nominative, genitive, dative, or accusative, whether in a
TEI feature system declaration or by some other means. Then the following two specifications are equivalent:

(103)

(1) <f name="case">
<vNot>
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<symbol value="genitive"/>
</vNot>
</f>

(1i) <f name="case">
<vAlt>
<symbol value="nominative"/>
<symbol value="dative"/>
<symbol value="accusative"/>
</vAlt>
</f>

If however no such system declaration is available, all that one can say about a feature specified via negation is
that its value is something other than the negated value.

Negation is always applied to a feature value, rather than to a feature-value pair. The negation of an atomic
value is the set of all other values which are possible for the feature.

Any kind of value can be negated, including collections (represented by a <col1> elements) or feature struc-
tures (represented by <fs> elements). The negation of any complex value is understood to be the set of values
which cannot be unified by it. Thus, for example, the negation of the feature structure F is understood to be
the set of feature structures which are not unifiable with F. In the absence of a constraint mechanism such as
the Feature System Declaration, the negation of a collection is anything that is not unifiable with it, including
collections of different types and atomic values. It will generally be more useful to require that the organization
of the negated value be the same as that of the original value, for example that a negated set is understood to
mean the set which is a complement of the set, but such a requirement cannot be enforced in the absence of a
constraint mechanism.

5.8.3 Collection of values

The <vMerge> element can be used wherever a feature value can appear. It contains two or more feature
values, all of which are to be collected together. The organization of the resulting collection is specified by the
value of the org attribute, which need not necessarily be the same as that of its constituent values if these are
collections. For example, one can change a list to a set, or vice versa.

As an example, suppose that we wish to represent the range of possible values for a feature ‘genders’ used
to describe some language. It would be natural to represent the possible values as a set, using the <col11>
element as in the following example:

(104)

<fs>

<f name="genders">
<coll org="set">
<sym value="masculine"/>
<sym value="feminine"/>
</coll>

</f>

</fs>

Suppose however that we discover for some language it is necessary to add a new possible value, and to treat
the value of the feature as a list rather than as a set. The <vMerge> element can be used to achieve this:

(105)
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<fs>
<f name="genders">
<vMerge org="list">
<coll org="set">
<sym value="masculine"/>
<sym value="feminine"/>
</coll>
<sym value="neuter"/>
</vMerge>
</f>
</fs>

5.9 Default Values

The value of a feature may be underspecified in a number of different ways. It may be null, unknown, or
uncertain with respect to a range of known possibilities, as well as being defined as a negation or an alternation.
As previously noted, the specification of the range of known possibilities for a given feature is not part of the
current specification: in the TEI scheme, this information is conveyed by the feature system declaration. Using
this, or some other system, we might specify (for example) that the range of values for an element includes
symbols for masculine, feminine, and neuter, and that the default value is neuter. With such definitions available
to us, it becomes possible to say that some feature takes the default value, or some unspecified value from the
list. The following special element is provided for this purpose:

(106)

— <default> represents the value part of a feature-value specification which contains a defaulted value.

x No attributes other than those globally available (see definition for tei.global.attributes)

The value of an empty <f> element which also lacks a fVal attribute is understood to be the most general
case, i.e. any of the available values. Thus, assuming the feature system defined above, the following two
representations are equivalent.

(107)

<f name="gender"/>

<f name="gender">

<vAlt>
<symbol value="feminine"/>
<symbol value="masculine"/>
<symbol value="neuter"/>
</vAlt>

</ f>

If, however, the value is explicitly stated to be the default one, using the <default> element, then the following
two representations are equivalent:

(108)

<f name="gender">
<default/>
</f>
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(109)

<f name="gender">
<symbol value="neuter"/>

</f>

Similarly, if the value is stated to be the negation of the default, then the following two representations are
equivalent:

(110)

<f n

ame="gender">

<vNot>
<default/>
</vNot>

</f>

(111)

<f n

ame="gender">

<vAlt>

<symbol value="feminine"/>
<symbol value="masculine"/>

</vAlt>

</f>

5.10 Linking Text and Analysis

Text elements can be linked with feature structures using any of the linking methods discussed elsewhere in the
Guidelines. In the simplest case, the ana attribute may be used to point from any element to an annotation of it,
as in the following example:

(112)

<s n="00741">

<w
<w
<w
<w
<w
<w
<w
<w
<w
<w
<w

ana="at0">The</w>
ana="ajs">closest</w>
ana="pnp">he</w>
ana="vvd">came</w>
ana="prp">to</w>
ana="nnl">exercise</w>
ana="vbd">was</w>
ana="to0">to</w>
ana="vvi">open</w>
ana="crd">one</w>
ana="nnl">eye</w>

<phr ana="av0">
<w>every</w>
<w>so</w>
<w>often</w>
</phr>
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<c ana="pun">,</c>

<w ana="cjs">if</w>

<w ana="pni">someone</w>
<w ana="vvd">entered</w>
<w ana="at0">the</w>

<w ana="nnl">room</w><!-—

</s>

The values specified for the ana attribute reference components of a feature-structure library, which represents
all of the grammatical structures used by this encoding scheme. (For illustrative purposes, we cite here only the
structures needed for the first six words of the sample sentence):

(113)

<fsLib id="C6" type="Claws 6 POS Codes"><!-—— ... —-—>

<fs id="ajs" type="grammatical structure" feats="wj ds"/>

<fs id="at0" type="grammatical structure" feats="wl"/>

<fs id="pnp" type="grammatical structure" feats="wr rp"/>

<fs id="vvd" type="grammatical structure" feats="wv bv fd"/>

<fs id="prp" type="grammatical structure" feats="wp bp"/>

<fs i1d="nnl" type="grammatical structure" feats="wn tc ns"/><!-— ... -—>
</fsLib>

The components of each feature structure in the library are referenced in much the same way, using the feats
attribute to identify one or more <£> elements in the following feature library (again, only a few of the available
features are quoted here):

(114)

<fLib><!——

</ f>

——><f id="bv" name="verbbase">
<symbol value="main"/>

<f id="bp" name="prepbase">
<symbol value="lexical"/>

</f>

<f id="ds" name="degree">
<symbol value="superlative"/>

</ f>

<f id="£d"

name="verbform">

<symbol value="ed"/>

</f>

<f id="ns"

name="number">

<symbol value="singular"/>

</f>

<f id="rp" name="prontype">
<symbol value="personal"/>

</f>

<f id="tc"

name="nountype">

<symbol value="common"/>

</f>

<f id="wj" name="class">
<symbol value="adjective"/>

</ f>
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<f id="wl" name="class">
<symbol value="article"/>
</f>
<f id="wn" name="class">
<symbol value="noun"/>
</f>
<f id="wp" name="class">
<symbol value="preposition"/>
</f>
<f id="wr" name="class">
<symbol value="pronoun"/>
</f>
<f id="wv" name="class">
<symbol value="verb"/>
</f>S<l—— L0 >
</fLib>

Alternatively, a stand-off technique may be used, as in the following example, where a <1inkGrp> element is
used to link selected characters in the text “Caesar seized control" with their phonological representations.

(115)

<text><!-- ... ——><body><!-- ... —-—-><s id="S1">
<w 1d="S1wl">
<c 1d="S1WlCl">C</c>ae<c id="S1WlC2">s</c>ar</w>
<w id="S1w2">
<c 1d="S1W2Cl">s</c>ei<c 1id="S1W2C2">z</c>e<c id="S1W2C3">d</c>

</w>
<w 1d="S1W3">con<c 1d="SIW3Cl">t</c>rol</w>.
</s><t=—— .. —=>
</body>
<fvLib id="FSL1" n="phonological segment definitions"><!-- as in previous example —->
</fvLib>
<1linkGrp type="phonology"><!—-— ... —--><link targets="S.DF S1W3C1"/>

<link targets="Z.DF S1W2C3"/>

<link targets="S.DF S1W2Cl"/>

<link targets="Z.DF S1W2C2"/><!—— ... ——>
</1linkGrp>
</text>

As this example shows, a stand-off solution requires that every component to be linked to must bear an identifier.
To handle the POS tagging example above, therefore, each annotated element would need an identifier of some
sort, as follows:

(116)

<s 1d="mds09" n="00741">

<w 1d="mds0901">The</w>

<w id="mds0902">closest</w>

<w 1d="mds0903">he</w>

<w 1d="mds0904">came</w>

<w 1d="mds0905">to</w>

<w 1d="mds0906">exercise</w><!—— ... ——>
</s>
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It would then be possible to link each word to its intended annotation in the feature library quoted above, as
follows:

(117)

<linkGrp type="POS-codes"><!--

<link targets="mds0902
<link targets="mds0903
<link targets="mds0904
<link targets="mds0905
<link targets="mds0906
<link targets="mds0907
<link targets="mds0908
<link targets="mds0909
<link targets="mds0910
</1linkGrp>
50

ajs"/>
pnp"/>
vvd" />
prp"/>
nnl"/>
vbd" />
to0"/>
vvi"/>
crd"/><!—— ... ——>

--><1link targets="mds0901 atO"/>

© ISO 2004 — All rights reserved



Annex A
(informative)
Formal Definitions and Implementation of the XML Representation of
Feature Structures

The elements discussed in this chapter constitute a module of the TEI scheme which, like other modules, may be
expressed using a variety of schema languages. This Annex provides a formal definition for the whole module,
using the compact syntax defined for ISO 19757-2 (Document Schema Definition Language, part 2). This is
followed by formal documentation for each element defined by the module, identical to that provided by the TEI
Guidelines.

A.1 RelaxNG specification for the module

\relax \@setckpt{iso—-fs.rnc}
{\setcounter{page} {47}
\setcounter{equation} {0}
\setcounter{enumi} {3}
\setcounter{enumii} {0}
\setcounter{enumiii} {0}
\setcounter{enumiv} {0}
\setcounter{footnote} {14}
\setcounter{mpfootnote} {0}
\setcounter{part} {0}
\setcounter{section} {1}
\setcounter{subsection} {1}
\setcounter{subsubsection} {0}
\setcounter{paragraph} {0}
\setcounter{subparagraph} {0}
\setcounter{figure} {0}
\setcounter{table} {0}
\setcounter{subsubparagraph} {0}
\setcounter{term} {0}
\setcounter{enums} {57}
\setcounter{tempcnt} {0}
\setcounter{enumsi} {2}
\setcounter{lstlisting}{0}
\setcounter{lstnumber} {1} }

A.2 Element documentation
A.2.1 binary [element]

Description: (binary value) represents the value part of a feature-value specification which can contain either
of exactly two possible values.

Classes: tei.singleVal

Declaration:

element binary { tei.global.attributes, binary.attributes.value,
empty }
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Attributes: (In addition to global attributes and those inherited from tei.singleVal)
value supplies a binary value (true or false, plus or minus).
Example:

<f name="strident">
<binary value="true"/>
</f>

<f name="exclusive">
<binary value="no"/>
</f>

The value attribute may take any value permitted for attributes of the XML datatype Boolean: this includes for
example the strings true, yes, or 1 which are all equivalent.

Modlule: iso-fs
A.2.2 coll [element]

Description:  (collection of values) represents the value part of a feature-value specification which contains
multiple values organized as a set, bag, or list.

Classes: tei.complexVal

Declaration:

element coll {
tei.global.attributes,
coll.attributes.org,
( ( £fs | tei.singleVal )x )

Attributes: (In addition to global attributes and those inherited from tei.complexVal)

org indicates organization of given value or values as set, bag or list. Legal values are:

set indicates that the given values are organized as a set.
bag indicates that the given values are organized as a bag (multiset).
list indicates that the given values are organized as a list.

Example:

<f name="name">

<coll>
<string>Jean</string>
<string>Luc</string>
<string>Godard</string>
</coll>

</f>

Example:
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<fs>
<f name="lex">
<symbol value="auxquels"/>
</f>
<f name="maf">
<coll org="list">
<fs>
<f name="cat">
<symbol value="prep"/>
</f>
</fs>
<fs>
<f name="cat">
<symbol value="pronoun"/>
</f>
<f name="kind">
<symbol value="rel"/>
</f>
<f name="num">
<symbol value="pl"/>
</f>
<f name="gender">
<symbol value="masc"/>
</f>
</fs>
</coll>
</f>
</fs>

Module: iso-fs
A.2.3 default [element]

Description: (Default feature value) represents the value part of a feature-value specification which contains a
defaulted value.

Attributes: Global attributes only
Classes: tei.singleVal

Declaration:
element default { tei.global.attributes, empty }
Example:

<f name="gender">
<default/>
</f>

Module: iso-fs
A.2.4 f[element]

Description: (Feature) represents a feature value specification, that is, the association of a name with a value
of any of several different types.

© I1SO 2004 — All rights reserved 53



Declaration:

element £ {
tei.global.attributes,
f.attributes.name,
f.attributes.fVval,
tei.featurevValx

Attributes: (In addition to global attributes)

name provides a name for the feature.

fVal references any element which can be used to represent the value of a feature.

Example:

<f name="gender">
<sym value="feminine"/>
</f>

If the element is empty then a value must be supplied for the fVal attribute.

Module: iso-fs

A.2.5 fLib [element]
Description: (Feature library) assembles library of feature elements.
Classes: tei.metadata

Declaration:

element fLib { tei.global.attributes, f+ }

Attributes: Global attributes and those inherited from tei.metadata

Example:

<fLib n="agreement features">
<f id="pl" name="person">
<sym value="first"/>

</f>

<f id="p2" name="person">
<sym value="second"/>

</f><!—— ... —=—><f id="ns" name="number">
<sym value="singular"/>
</f>

<f id="np" name="number">
<sym value="plural"/>
</f>S<l—— .. ==

</fLib>
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The global n attribute may be used to supply an informal name to categorise the library’s contents.

Module: iso-fs

A.2.6 fs[element]

Description: (Feature structure) represents a feature structure, that is, a collection of feature-value pairs orga-
nized as a structural unit.

Classes: tei.complexVal tei.metadata

Declaration:

element fs {
tei.global.attributes,
fs.attributes.type,
fs.attributes. feats,
fx

Attributes: (In addition to global attributes and those inherited from tei.complexVal, tei.metadata)

type specifies the type of the feature structure.

feats references the feature-value specifications making up this feature structure.
Example:

<fs type="agreement structure" rel="ns">
<f name="person">
<sym value="third"/>
</f>
<f name="number">
<sym value="singular"/>
</f>
</fs>

Module: iso-fs
A.2.7 fvLib [element]

Description: (Feature-value library) assembles a library of reusable feature value elements (including complete
feature structures).

Classes: tei.metadata

Declaration:

element fvLib { tei.global.attributes, fvLib.attributes.type,
tei.featurevalx }

Attributes: (In addition to global attributes and those inherited from tei.metadata)
type indicates type of feature-value library (i.e., what type of feature values it contains).
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Example:

<fvLib type="symbolic values">
<symbol id="sfirst" value="first"/>

<symbol id="ssecond" value="second"/><!-- ... ——><symbol id="ssing" value="singular"/>
<symbol id="splur" value="plural"/><!-— ... ——>
</fvLib>

A feature value library may include any number of values of any kind, including multiple occurrences of identical
values such as <binary value="true"/> ordefault. The only thing guaranteed unique in a feature value
library is the set of labels used to identify the values.

Module: iso-fs

A.2.8 numeric [element]

Description: (Numeric value) represents the value part of a feature-value specification which contains a numeric
value or range.

Classes: tei.singleVal

Declaration:

element numeric {
tei.global.attributes,
numeric.attributes.value,
numeric.attributes.max,
numeric.attributes.trunc,
empty

Attributes: (In addition to global attributes and those inherited from tei.singleVal)

value supplies a lower bound for the numeric value represented, and also (if max is not supplied) its upper
bound.

max supplies an upper bound for the numeric value represented.

trunc specifies whether the value represented should be truncated to give an integer value.

Example:

<numeric value="42"/>

This represents the numeric value 42.

Example:

<numeric value="42.45" max="50" trunc="yes"/>

This represents any of the nine possible integer values between 42 and 50 inclusive. If the trunc attribute had
the value NO, this example would represent any of the infinite number of numeric values between 42.45 and
50.0
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It is an error to supply the max attribute in the absence of a value for the value attribute.

Module: iso-fs

A.2.9 string [element]

Description: (String value) represents the value part of a feature-value specification which contains a string.
Classes: tei.singleVal

Declaration:

element string { tei.global.attributes, text }

Attributes: Global attributes and those inherited from tei.singleVal

Example:

<f name="greeting">
<string>Hello, world!</string>
</f>

Module: iso-fs

A.2.10 symbol [element]

Description: (Symbolic value) represents the value part of a feature-value specification which contains one of
a finite list of symbols.

Classes: tei.singleVal

Declaration:

element symbol { tei.global.attributes, symbol.attributes.value,
empty }

Attributes: (In addition to global attributes and those inherited from tei.singleVal)

value supplies the symbolic value for the feature, one of a finite list that may be specified in a feature declaration.

Example:

<f name="gender">
<symbol value="feminine"/>
</f>

Module: iso-fs

A.2.11 VAl [element]

Description: (Value alternation) represents the value part of a feature-value specification which contains a set
of values, only one of which can be valid.
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Classes: tei.complexVal

Declaration:

element vAlt { tei.global.attributes, ( ( tei.featureval ),
tei.featureval+ ) }

Attributes: Global attributes and those inherited from tei.complexVal

Example:

<f name="gender">

<vAlt>
<sym value="masculine"/>
<sym value="neuter"/>
<sym value="feminine"/>
</vAlt>

</f>

Module: iso-fs

A.2.12 vlLabel [element]

Description:(value label) represents the value part of a feature-value specification which appears at more than

point in a feature structure
Classes: tei.singleVal

Declaration:

element vLabel {
tei.global.attributes,
vLabel.attributes.name,
tei.featureval?

Attributes: (In addition to global attributes and those inherited from tei.singleVal)

name supplies a name for the sharing point.

Example:

<fs id="NVA">
<f name="nominal">
<fs>
<f name="nm-num">
<vLabel name="L1">
<symbol value="singular"/>

</vLabel>

</f><!—— other nominal features —-->
</fs>
</f>
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<f name="verbal">
<fs>
<f name="vb-num">
<vLabel name="L1"/>
</f>
</fs><!-- other verbal features —-->
</f>
</fs>

Module: iso-fs

A.2.13 vMerge [element]

Description: (Merged collection of values) represents a feature value which is the result of merging together
the feature values contained by its children, using the organization specified by the ORG attribute.

Classes: tei.complexVal

Declaration:

element vMerge {
tei.global.attributes,
vMerge.attributes.org,
tei.featureval+

Attributes: (In addition to global attributes and those inherited from tei.complexVal)

org indicates the organization of the resulting merged values as set, bag or list. Legal values are:

set indicates that the resulting values are organized as a set.
bag indicates that the resulting values are organized as a bag (multiset).
list indicates that the resulting values are organized as a list.

Example:

<vMerge org="list">
<coll org="set">
<symbol value="masculine"/>
<symbol value="neuter"/>
<symbol value="feminine"/>
</coll>
<symbol value="indeterminate"/>
</vMerge>

This example returns a list, concatenating the indeterminate value with the set of values masculine, neuter and
feminine.

Module: iso-fs

A.2.14 vNot [element]

Description: (Value negation) represents a feature value which is the negation of its content.
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Classes: tei.complexVal

Declaration:

element vNot { tei.global.attributes, ( tei.featureVal

Attributes: Global attributes and those inherited from tei.complexVal

Example:

<vNot>
<sym value="masculine"/>
</vNot>

Example:

<f name="mode">
<vNot>
<vAlt>
<symbol value="infinitive"/>
<symbol value="participle"/>
</vAlt>
</vNot>
</f>

Module: iso-fs
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Annex B
(informative)
Examples for lllustration

Consider the problem of specifying the grammatical case, gender and number features of classical Greek
noun forms. Assuming that the case feature can take on any of the five values nominative, genitive,
dative, accusative and vocative; that the gender feature can take on any of the three values feminine,
masculine, and neuter; and that the number feature can take on either of the values singular and plural,
then the following may be used to represent the claim that the Latin word rosas meaning ‘roses’ has accusative
case, feminine gender and plural number.

<fs type="word structure">
<f name="case"> <symbol value="accusative"/> </f>
<f name="gender"> <symbol value="feminine"/> </f>
<f name="number"> <symbol value="plural"/> </f>
</fs>

An XML parser by itself cannot determine that particular values do or do not go with particular features; in
particular, it cannot distinguish between the presumably legal encodings in the preceding two examples and the
presumably illegal encoding in the following example.

<!—— %xPRESUMABLY ILLEGAL* ... ——> <fs type="word structure">
<f name="case"> <symbol value="feminine"/> </f>
<f name="gender"> <symbol value="accusative"/> </f>
<f name="number"> <minus/> </f>

</fs>

There are two ways of attempting to ensure that only legal combinations of feature names and values are used.
First, if the total number of legal combinations is relatively small, one can simply list all of those combinations in
<fLib> elements (together possibly with <fvLib> elements), and point to them using the feat s attribute in the
enclosing <fs> element. This method is suitable in the situation described above, since it requires specifying
a total of only ten (5 + 3 + 2) combinations of features and values. Further, to ensure that the features are
themselves combined legally into feature structures, one can put the legal feature structures inside <fsLib>
elements. A total of 30 feature structures (5 x 3 x 2) is required to enumerate all the legal combinations of
individual case, gender and number values in the preceding illustration. Of course, the legality of the markup
requires that the feat attributes actually point at legally defined features, which an XML parser, by itself, cannot
guarantee. A more general method of attempting to ensure that only legal combinations of feature names and
values are used is to provide a feature system declaration that includes a <valRange> element for each feature
one uses. Here is a sample <valRange> element for the ‘case’ feature described above. For further discussion
of the <valRange> element, see Annex A; the <vAlt> element is discussed in 5.8.1 Alternation.

<!—-— VALRANGE specification for CASE feature --> <valRange>
<vAlt>
<symbol value='nominative’ />
<symbol value='genitive’/>
<symbol value='dative’/>
<symbol value=’accusative’ />
<symbol value=’vocative’/>
</vAlt>
</valRange>
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Similarly, to ensure that only legal combinations of features are used as the content of feature structures, one
should provide <fsConstraint> elements for each of the types of feature structure one employs. Validation
of the feature structures used in a document based on the feature-system declaration, however, requires that
there be an application program that can use the information contained in the feature-system declaration.
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Annex C
(informative)
Type Inheritance Hierarchies

Types organize feature structures into natural classes and perform the same role as concepts in terminologi-
cal knowledge representation systems or abstract data-types in object oriented programming languages. It is
therefore natural to think of types as being organized into an inheritance hierarchy based on their generality.

The type inheritance hierarchy is defined by assuming a finite set type of types, ordered according to their
specificity, where type t is more specific than type o if T inherits all properties and characteristics from c. In this
case ¢ subsumes or is more general than t: for 6,1 € type,c C 1. If 6 C 7, then ¢ is also said to be a supertype
of 7, or, inversely, T is a subtype of c.

The standard approach in knowledge representation systems, which is adopted in the definition of type hierar-
chies, has been to define a finite number of ISA arcs which link subtypes to supertypes. The full subsumption
relation is then defined as the transitive and reflexive closure of the relation determined by the ISA links. A
standard restriction on the 1SA links is that they must not be cyclic, i.e. it should not be possible to follow the links
from a type back to itself. This restriction makes the subsumption relation a partial order.

C.1 Definition

A type hierarchy forms a tree-like finite structure. It must have the following properties:

(118) Properties of type hierarchy

Unique top: It must be a single hierarchy containing all the types with a unique top type.
No cycle: It must have no cycles.

Unique greatest lower bounds: Any two compatible types must have a unique highest common descen-
dant or subtype called greatest lower bound.'® Incompatible types share no common descendants
or subtypes.

Here is an example of a type hierarchy depicting a part of the natural world:

(119) Type hierarchy for some animals
top
plant animal

fish  bird mammel

caninehumanbovine

Here, while the types human and canine are not compatible, the types animal and human are compatible and
thus must have a unique greatest lower bound. Being in the hierarchical relation, the type human becomes that
lower bound in a trivial manner.

A linguistically more relevant example can be given as below: ©)

15) If the most general type is depicted not as the top, but as the bottom such that the hierarchical tree branches out upward like a real tree
with the root at the bottom, then this property must be restated as: Any two compatible types must have a unique least upper bound.
16) Taken modified from Sag, Wasow and Bender (2003: 61).
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(120) Linguistic example for type hierarchy
feature-structure

/\
sign pos

adj_st agr-pos conj_st prep_st

det_ st noun_st verb st

Here the type feature-structure is treated as the unique top type. The types det st, noun_st and verb_st are
treated as subtypes of the type agr-pos,!”) since they are governed by agreement rules in English.'®

C.2 Multiple Inheritance

Unlike trees, type hierarchies allow common parents or supertypes. Consider a naive medieval picture of entities
as depicted as below:

(121) Medieval hierarchy of entities
entity

T T

inanimate animate
animal spiritual
canine rational

human angel

Subtypes inherit all the properties from their supertypes. The type human, for instance, inherits all the properties
of its supertypes, both animal and rational, spiritual, animate and the top type entity. Note that it has two
immediate supertypes or parents, thus being entitled for so-called multiple inheritance. A human thus is a
spiritual and rational animal animate being.

Linguistic signs may also allow multiple inheritance like the following.'®).

(122) Multiple inheritance
sign

/\

expression lex-sign

phrase_st word_st lex_st

Here, the type word_st inherits all the properties from both of its immediate supertypes expression and lex-sign.
Hence, a word is a lexical expression.

C.3 Type Constraints

In the feature structures discussed so far there is no notion of type constraints or simply typing: although the
nodes in a feature structure graph were labelled with types, arbitrary labellings with type symbols and features
were permissible. What is missing is appropriateness conditions which model the distinction between features
which are not appropriate for a given type and those whose values are simply unknown.

17) st stands for “structure”.
18) In alanguage like French or Latin, the type adj_st should be also be treated as a subtype of agr-pos.
19) See Sag, Wasow and Bender (2003: 470-475)
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The extension to feature typing is bound to the type hierarchy: for each feature there must be a least type
where the feature is introduced and the type of the value for the feature is specified. Furthermore, if a feature is
appropriate for a type, then it is appropriate for all of its subtypes.

Consider features like GENDER and AUX for English. The feature GENDER is appropriate for the type noun_st,
while it is not so for the type verb_st. Likewise, the feature AUX is appropriate for the type verb_st, but not for the
type noun_st. Hence, each type is closely associated with a set of appropriate features.

The values of each feature are again restricted as types. The appropriate or permissible values of the feature
GENDER are feminine, masculine, neuter etc., but cannot be boolean or binary values, namely + and -. On the
other hand, the appropriate values of the feature AUX are only Boolean values.

Consider the following type hierarchy for agreement:20)

(123) Agreement type hierarchy

[ ]
|

agr-cat
PERSON
NUMBER

3Sing/\

non-3sing

| GENDER| /\

1sing non-1sing

2sing plural

Here, the type agr-cat and its left daughter 3sing are annotated with a set of appropriate features, {PER-
SON,NUMBER} and {GENDER} for their respective type. By such an annotated hierarchy, the construction of
well-formed feature structures is strictly constrained. In constructing feature structures, the type agr-cat licenses
the specification of the features PERSON and NUMBER only, while the type 3sing allows the specification of the
feature GENDER as well as those two inherited features person and number from its supertype agr-cat.

Furthermore, when each feature is introduced, it is also associated with a particular set of its admissible values.
The following would be an example:

(124) Admissible Values

features admissible values
PERSON {1st, 2nd, 3rd}
NUMBER {singular, plural}
GENDER | {feminine, masculine, neuter}

These two working together lay a basis for deciding on well-formed feature structures. For example, the following
would not be a well-formed feature structure:

(125) lll-formed feature structure

agr-cat
PERSON 3rd
TENSE singular

20) Copied from the type hierarchy presented in Sag, Wasow and Bender (2003: 492).
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The feature TENSE is not appropriate for the type agr-cat nor the value singular can be admissible for the feature
TENSE. Thus, the feature structure above is declared to be ill-formed.

On the other hand, the following is a well-formed feature structure:

(126) Well-formed feature structure

1sing
PERSON Tst
NUMBER singular

Being a subtype of agr-cat, the type 1sing inherits two of its appropriate features. These two features are then
assigned admissible values.
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Annex D
(informative)
Formal Semantics of Feature Structure
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Annex E
(informative)
Use of Feature Structures in Applications

Feature structures are used in increasingly many current grammatical theories, grammar development platforms
and natural-language processing systems. This Annex is intended to help the reader overview the diversity and
the usefulness of feature structures in scientific practice.

E.1 Phonological Representation

The earliest use of feature structures may be found in phonology. In phonological representation, for example
in Chomsky & Halle (1968), the segment of the consonant /s/ is represented in feature structures as follows:
{<consonantal +>, <vocalic —>, <voiced —>, <anterior +>, <coronal +>, <continuant 4>,
<strident +>}

E.2 Grammar Formalisms or Theories

Almost all the current computational grammar formalisms or theories incorporate feature structures. They use
the operation of unification to merge the information encoded in feature structures, hence sometimes the term
unification-based grammars. LAG is an exception, adopting a strictly time-linear derivation procedure. The
following grammar formalisms or theories share a property that they all use feature structures to represent some
important aspects of the grammatical information. (Shieber, 1986).

a) Generalized Phrase Structure Grammar (GPSG): Gazdar, Klein, Pullum and Sag (1985)

b) Head-driven Phrase Structure Grammar (HPSG): Pollard and Sag (1987; 1994) and Sag, Wasow and
Bender (2003)

C

d

Lexical Functional Grammar (LFG): Bresnan (1982)

Functional Unification Grammar (FUG): Kay (1983; 1985)

]

f) Tree Adjoining Grammar (TAG): Vijay-Shanker and Joshi (1988)

g) Left-Associative Grammar (LAG): Hausser (1999)

)
)
) Definite Clause Grammar (DCG): Pereira and Warren (1980)
)
)
h)

Construction Grammar (CG): Kay (2002)

E.3 Computational Implementations

In parallel to these grammar formalisms and theories, many computational implementations of feature structure
have emerged, some of which are listed below.

a) ALE (Carpenter and Penn, 1995)

Created at the Carnegie Mellon University, the Attribute Logic Engine is one of the oldest systems still being
used for the implementation of HPSG grammars. This system is an integrated phrase structure parsing
and definite clause logic programming system in which terms are typed feature structures. Originally
ALE, based on Kasper-Rounds logic (Kasper and Rounds, 1986) and Carpenter (1992), was created in
collaboration between Bob Carpenter and Gerald Penn, but then became the sole work of Gerald Penn
and is still being continually upgraded.
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b) ALEP (Groenendijk and Simpkins, 1994)

The Advanced Linguistic Engineering Platform, created at the Advanced Information Processing Group
at BIM, Belgium, is a platform for developers of linguistic software and provides a distributed, multitasking
(Motif-based) environment containing tools for developing grammars and lexicons. The system comes with
a unification-based formalism and parsing, generation and transfer components. A facility to implement
two-level morphology is also provided. The ALEP formalism has been developed on the basis of the ET
6.1 project (Alshawi et al., 1991). The core of the ET 6.1 formalism follows a rather conservative design
and ALEP is very much a traditional rule based grammar development environment. The rules are based
on a context free phrase structure backbone with associated types.

c) AMALIA (Wintner, Gabrilovich, and Francez, 1997)

AMALIA is a grammar development system that includes a compiler of grammars (for parsing and gener-
ation) to abstract-machine instructions, and an interpreter for the abstract-machine language. The gen-
eration compiler inverts input grammars (designed for parsing) to a form more suitable for generation.
The compiled grammars are then executed by the interpreter using one control strategy, regardless of
whether the grammar is the original or the inverted version. They thus obtain a unified, efficient platform
for developing reversible grammars.

d) BABEL (Miller, 1996)

BABEL is a natural-language processing system for German in Prolog. The linguistic theory behind the
system is a version of HPSG by Pollard and Sag. It focuses mainly on syntactic issues; word order phe-
nomena in particular. As German is a language with relatively free constituent order, there are problems
quite different from those known for the processing of languages like English. BABEL follows the program
of linearization grammar begun by Pollard, Levine, and Kasper (1993), Reape (1994), and Kathol (1995).

e) ConTroll (Gétz, 1995)

ConTroll is a grammar development system (or a pure logic program) which supports the implementation
of current constraint-based theories. It uses strongly typed feature structures as its principal data struc-
ture and offers definite relations, universal constraints, and lexical rules to express grammar constraints.
ConTroll comes with the graphical interface Xtroll which allows displaying of AvMs and trees, as well as
a graphical debugger. The ConTroll-System was based on the logical foundations of HPSG grammars
created by Paul King with his Speciate Re-entrant Logic (SRL).

f) CL-ONE (Manandhar, 1994)

CL-ONE extends ProFIT’s typed feature structure description language. The system comprises constraint
solvers for set descriptions, linear precedence and guarded constraints. Set and linear precedence con-
straints are defined over constraint terms (cterm), which are internal CL-ONE data structures. Unification
of sets differs from standard Prolog terms unification. The system has been designed in the project The
Reusability of Grammatical Resources, at the University of Edinburgh and at Universitat des Saarlandes,
Saarbriicken.

g) CUF (Dérre and Dorna, 1993)

The Comprehensive Unification Formalism (CUF) has been developed at IMS, University of Stuttgart, within
the DYANA research project as an implementational tool for grammar development. CUF has been designed
to provide mechanisms broadly used in current unification based grammar formalisms such as HPSG or
LFG. The main features of CUF are a very general type system and relational dependencies on feature
structures. It is a constraint based system, with no specialized components, e.g., for morphology or
transfer. It can be seen as a general constraint solver and it does not include a parser or a generator.

h) DATR (Evans and Gazdar, 1996)

Developed at the University of Sussex, DATR is a formal language for representing a restricted class of
inheritance networks, permitting both multiple and default inheritance with path/value equations. DATR
has been designed specifically for lexical knowledge representation. QDATR is an implementation of the
DATR formalism. It supports syntactic analysis, text generation, machine translation and can be used for
testing linguistic theories making use of non-monotonic inheritances.

i) DBS (Hausser, 1999, 2001)
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Developed by Roland R. Hausser at the University of Erlangen, DBS has been implemented with JAVA to
model natural language communication in the form of an artificial agent (talking robot). In DBS, content
stored in the context and coded in language has the form of concatenated propositions. Propositional
content is defined as a set of features structures, called proplets. Dealing with various English construc-
tions, the system demonstrates how natural language communication is successfully carried out at both
the hearer and speaker modes by various processes of navigation through a semantic database. Based
on LAG, navigation proceeds in a strictly time-linear order, while operating on feature structures without
unification.

FGW

The Functional Grammar Workbench system uses Functional Grammar (FG) as a model for linguistic
generation. The user must provide a grammar and lexicon for the target language and FGW is able to
produce surface strings from predicate-argument formulas.

Grammar Writer's Workbench for LFG (Kaplan and Maxwell, 1996)

The Xerox LFG Grammar Writer's Workbench is a complete parsing implementation of the LFG syntac-
tic formalism, including various features introduced since the original Kaplan and Bresnan (1982) paper
(functional uncertainty, functional precedence, generalization for coordination, multiple projections, etc.)
It includes a very rich c-structure rule notation, plus various kinds of abbreviatory devices (parameter-
ized templates, macros, etc.). It does not directly implement recent proposals for lexical mapping theory,
although templates can be used to simulate some of its effects. The system has an elaborate mouse-
driven interface for displaying various grammatical structures and substructures — the idea is to help a
linguist understand and debug a grammar without having to comprehend the details of specific processing
algorithms.

The workbench runs on most Unix systems (Sun, DEC, HP, ---) and under DOS on PC'’s, although most
of our experience is on Sun’s. It does not have a teletype interface—it only runs as a graphical program.
It requires at least 16MB of ram on UNIX and 8MB under DOS, plus 40 or more MB of disk (for program
storage and swapping).

GULP (Covington, 1989)

The Graph Unification Logic Programming is a preprocessor for handling feature structures in Prolog
programs. It solves a pesky problem with Prolog, i.e., the lack of a good way to represent feature structures
in which features are identified by name rather than position.

LFG-PC and LFGW

Avery Andrews developed a small LFG system that runs on PC’s (XT’s, in fact), that is basically oriented
towards producing small fragments to illustrate aspects of grammatical analysis in basic LFG. It uses some
nonstandard notations (mostly in the interests of brevity), and is missing some things that really ought to
be there (like a properly working treatment of long-distance dependencies), but it does have a primitive
morphological component, something that the author has found essential for pedagogical use (even tiny
fragments tend to have so many inflected word forms that typing in the lexicon is a major deterrent to
serious use). This system is currently available in a (non-Windows) PC-version (LFG-PC) and a Windows
version (LFGW).

LIFE (Ait-Kaci and Podelski, 1993)

LIFE is an experimental programming language proposing to integrate three orthogonal programming
paradigms proven useful for symbolic computation. From the programmer’s standpoint, it may be perceived
as a language supporting logic programming, functional programming, and object-oriented programming.
From a formal perspective, it may be seen as an instance (or rather a composition of three instances) of
a Constraint Logic Programming scheme due to Hohfeld and Smolka (1988) refining that of Jaffar and
Lassez (1986). LIFE’s object unification is seen as constraint-solving over specific domains. LIFE is built
on work by Smolka and Rounds to develop type-theoretic, logical, and algebraic renditions of a calculus of
order-sorted feature approximations.

LiLFeS (Makino, et al., 2000)

The LiLFeS system provides a programming environment with efficient processing of typed feature struc-
tures. Itis a Prolog-like logic-programming language integrating feature-structure descriptions and definite-
clause programs by expressing predicate arguments of Prolog in typed feature structures instead of first-
order terms. A user who already knows Prolog syntax can easily understand the LiLFeS syntax. The core

© ISO 2004 — All rights reserved



engine of the LiLFeS system is developed in C++ as an implementation of Warren’s Abstract Machine (Ait-
Kaci, 1991) and Abstract Machine for Attribute-Value Logics (Carpenter and Qu, 1995) so as to maximize
efficiency.

Large-scale systems such as grammars, parsers and grammar-development tools have been developed in
LiLFeS. For example, a wide-coverage treebank grammar of HPSG for analyzing both syntactic structures
and predicate-argument relations is developed by a grammar-development tool implemented in LiLFeS
(Miyao, et al., 2004). The LiLFeS system also provides a C++ class library for manipulating typed feature
structures and their databases. Enju (Tsuruoka, et al., 2004), an efficient probabilistic HPSG parser for
the English treebank grammar, is implemented in C++ using this library.

p) LKB (Copestake, 2002)

The Linguistic Knowledge Building (LKB) system is a grammar and lexicon development environment for
use with constraint-based linguistic formalisms. The LKB software is distributed by the LinGO initiative, a
loosely-organized consortium of research groups working on unification-based grammars and processing
schemes.

q) Malaga (Beutel, 1997)

Malaga is a development environment for Left-Associative Grammars (LAGs). The LAG is a formalism
that describes the analysis and generation of words and sentences strictly from the left to the right. It
has been introduced by Roland Hausser. The Grammars for morphological and/or syntactical analysis
are written in a Pascal-ish language, but it uses a powerful dynamic typing system with attribute-value
structures and lists that can be nested with a collection of newly-defined operators and standard functions.
It contains constructs to branch the program execution into parallel paths when a grammatical ambiguity is
encountered. The grammars are compiled into virtual code that is executed by an interpreter. The toolkit
comprises parser generators for the development of morphological and syntactic parsers (including sample
grammars), source-code lexicon/grammar debuggers (with Emacs modes), and an optional visualization
tool to display derivation paths and categorial values using GTK+. The toolkit is written in ANSI/ISO-
compliant C and its source code is freely available. It can be used and distributed under the terms of the
GNU General Public License. It should work out-of-the-box on most POSIX systems. Porting to other
platforms should be easy. A Windows port has already been made publicly available.

r) PAGE (Krieger and Schéfer, 1994a; 1994b)

Platform for Advanced Grammar Engineering (PAGE) is a grammar development environment and run-
time system which evolved from the DISCO project (Uszkoreit et al., 1994) at the German Research Center
for Artificial Intelligence (DFKI). The system has been designed to facilitate development of grammati-
cal resources based on typed feature logics. It consists of several specialized modules which provide
mechanisms that can be used to directly implement notions of HPSG, LFG and other grammar formalisms.

PAGE provides a general type system (TDL), a feature constraint solver (UDiNe), a chart parser, a feature
structure editor (Fegramed), a chart display to visualize type hierarchies and an Ascli-based command
shell. In the remainder, we will concentrate mostly on the TDL module which is best documented and
constitutes the fundamental part of the environment. The description of TDL is based on Krieger and
Schéafer (1994a; 1994b).

s) PET (Callmeier, 2000)

The PET system for efficient processing of unification-based grammars is being developed at the Depart-
ment of Computational Linguistics at Saarland University by Ulrich Callmeier and others. The system is
developed in C so as to maximize efficiency, and employs a quick check technique for unifiability. It is the
most efficient parser in the benchmarks of parsers for the LinGO grammar in 1999 (Oepen, et al., 2000).

t) ProFIT (Erbach, 1994)

Prolog with Features, Inheritance and Templates (ProFIT), developed at Universitat des Saarlandes, Saar-
briicken, is an extension of Prolog. ProFIT programs consist of data type declarations and Prolog definite
clauses. ProFIT provides mechanisms to declare an inheritance hierarchy and define feature structures.
Templates are widely used to simplify descriptions, encode constraint-like conditions and abstract over
complex data structures.

u) TDL (Krieger and Schéafer, 1994a; 1994b)
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Type Description Language (TDL) is a typed feature-based language, which is specifically designed to
support highly lexicalized grammar theories, such as HPSG,FUG, or CUG. TDL offers the possibility to
define (possibly recursive) types, consisting of type and feature constraints over the Boolean connectives
AND, OR, and NOT, where the types are arranged in a subsumption hierarchy. TDL distinguishes between
avm types (open-world reasoning) and sort types (closed-world reasoning) and allows the declaration of
partitions and incompatible types. Working with partially and fully expanded types as well as with undefined
types is possible, both at definition and at run time. TDL is incremental in that it allows the redefinition of
types. Efficient reasoning is accomplished through specialized modules. Large grammars and lexicons for
English, German, and Japanese are available.

TFS (Emele and Zajac, 1990; Emele, 1993)

The Typed Feature Structure (TFS) representation formalism was developed in the German Polygloss
project at IMS, University of Stuttgart. The inheritance-based constraint architecture embodied in the TFS
system integrates two computational paradigms: the object-oriented approach offers complex, recursive,
possibly nested, record objects represented as typed feature structures with attribute-value restrictions and
(in)equality constraints, and multiple inheritance; the relational programming approach offers declarativity,
logical variables, non-determinism with backtracking, and existential query evaluation. The constraint-
based properties of the TFS formalism are fully exploited in the Delis lexicon model and pertaining tools.
These include corpus search and support for the major steps and types of activity in lexicon building:
creation, population and modification of lexical models; exportation towards formats for both NLP and
human use.

TRALE

The TRALE system is a combination of the experience from the development and application of ALE
and ConTroll. The idea is to combine the advantage of efficiency which ALE offers with the original con-
cept of ConTroll, to submit a depiction, as true to form as possible, of theoretical HPSG grammars into
computational implementation. The continuing work on TRALE, which focuses on the requirements of
current linguistic research of HPSG, is motivated by this depiction. Our objective is to provide task-specific
solutions for typical, computationally expensive mathematical constructs of HPSG grammars. It should
then become possible to implement even theoretically well grounded grammars efficiently, whose com-
putational treatment goes beyond the capabilities of a pure, general constraint solving system such as
ConTroll, without forcing linguists to renounce their specific assumptions about the structure of language.
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