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Abstract Over the past few years, significant progress has been maffiiant processing
with wide-coverageipsc grammars HpPsG-based parsing systems are now avail-
able that can process medium-complexity sentences (of terenty words, say)
in average parse times equivalent to real (i.e. human rgatime. A large num-
ber of engineering improvements in curremsc systems have been achieved
through collaboration of multiple research centers anduadiegxchange of expe-
rience, encoding techniques, algorithms, and even pidsedtware. This article
presents an approach to grammar and system engineerimggdeompetence
& performance profilingthat makes systematic experimentation and the precise
empirical study of system properties a focal point in depeient. Adapting
the profiling metaphor familiar from software engineerimgcbnstraint-based
grammars and parsers enables developers to maintain atatecrecord of sys-
tem evolution, identify grammar and system deficiencieslkdyi and compare
to earlier versions or between different systems. We di&sausumber of exam-
ple problems that motivate the experimental approach, ppty ahe empirical
methodology in a fairly detailed discussion of progress endring a develop-
ment period of three years.
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Dramatis Personae

Let there be some more test made of my metal,
Before so noble and so great a figure
Be stamp’d upon it.

(Shakespeare, 1623)

[...] we view the discovery of parsing strategies as a largely expe
imental process of incremental optimization. (Erbach, 1991a)

[...] the study and optimisation of unification-based parsingtmus
rely on empirical data until complexity theory can more aetealy
predict the practical behaviour of such parsers. (Carroll, 1994)

Early in 1994, research groups at Saadkert (Uszkoreit et al., 1994) and
CSLI Stanford (Copestake, 1992; Flickinger & Sag, 1998) started to cellab
orate on the development of large-scalesc grammars, suitable grammar
engineering platforms, and efficient processors. Whild Isites had worked
on HPSG implementation before, the joint effort has greatly inseghproduc-
tivity, resulted in a mutual exchange of knowledge and tetigy, and helped
build a collection of grammar development environmentses# highly en-
gineered parsers (Kiefer, Krieger, Carroll, & Malouf, 19%thd an efficient
generator (Carroll, Copestake, Flickinger, & Poznansgf9). Around 1998,
the grammar formalisms and parsing group at Tokyo Univer§iforisawa &
Tsuijii, 1996) made an entrance on stage and now supplieaddiexpertise
on (abstract-machine-based) compilation of typed featticectures, Japanese
HPSG, and grammar approximation techniques. More recentlyplgeftom
Cambridge, Edinburgh, and Sussex Universities (UK) anah fitte Norwegian
University of Science and Technology (in Trondheim) hage gined the cast.
Although their individual systems often supply extra fuasality, the groups
have converged on a common descriptive formalism — a coatbez\blend of
Carpenter (1992), Copestake (1992), and Krieger &8a1(1994) —that allows
grammars to be processed by (at least) five different platforms. Thed0
grammar, a multi-purpose, broad-coverage grammar of &mgleveloped at
CSLI and among the largesPsc implementations currently available, serves
as a common reference for all three groups (while of cousesities continue
development of additional grammars for English, Germad Japanese). With
one hundred thousand lines of source, roughly eight thalisges, an average
feature structure size of some three hundred nodes, twermgndexical and
thirty seven phrase structure rules, and some six thousaichal (stem) en-
tries, the LinGO grammar presents a difficult challenge focpssing systems.
While scaling the systems to this rich set of constraintsianpaioving process-
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ing and constraint resolution algorithms, the groups hagelarly exchanged
benchmarking results, in particular at the level of indisatlcomponents, and
discussed benefits and disadvantages of particular erg=odimd algorithms.
Precise comparison was found essential in this process andabilitated a
degree of cross-fertilization that proved beneficial fbpalticipants.

Act 1 below introduces the profiling methodology, suppatiools, and
the sets of common reference data and benchmarking mdtetsvere used
among the groups. By way of example, the profiling metaphthres applied
in Act 2 to a choice of engineering issues that (currently) oaly be ap-
proached empirically. Act 3 introduces thet platform (Callmeier, 2000) as
another actor in the experimental setapT synthesizes a variety of techniques
from the individual systems in a fresh, modular, and highdyameterizable
re-implementation. On the basis of empirical data obtainéd pET, Act 4
provides a detailed comparison of competence and perfaenprofiles ob-
tained in October 1996 with the development status threesylater. Finally,
Act 5 applies some of the metrics introduced earlier to a irglirthensional,
cross-grammaand cross-platform comparison.

1. Competence & Performance Profiling

In system development and optimization, subtle algorithemd implemen-
tational decisions often have a significant impact on systenformance, so
monitoring system evolution very closely is crucial. Deyrs should be en-
abled to obtain a precise record of the status of the syst@myagiven point;
also, comparison with earlier results, between variouarmater settings, and
across platforms should be automated and integrated vétredular develop-
ment cycle. System performance, however, cannot be addygucabracterized
merely by measurements of overall processing time (andapsrimemory us-
age). Properties of (i) individual modules (in a classielp, especially the
unifier, type system, and parser), (ii) the grammar beind,ueed (iii) the input
presented to the system all interact in complex ways. Inrdadebtain an ana-
Iytical understanding of strengths and weaknesses of eplairt configuration,
finer-grained records are required. By the same token, olgeeintuition and
isolated case studies are often insufficient, since in p&gbeople who have
worked on a particular system or grammar for years still firt fan intuitive
prediction of system behaviour can be incomplete or plaimyng.

Although most grammar development environments havatfasito batch-
process a test corpus and record the results produced bystems these
are typically restricted to processing a flat, unstructungait file (listing test
sentences, one per line) and outputting a small number @epsing results
into a log file? In total, we note a striking methodological and technolabjic



Table 1.1. Some of the parameters making up a competence & performaafikep

readings number of complete analyses obtained (when applicabks, afipacking)
filter percentage of parser actions predicted to fail (rule filbes fquick check’)
etasks number of attempts to instantiate an argument position irdea r

stasks number of successful instantiations of argument positiomsles

aedges number of active edges built by the parser (where appra)riat

pedges number of passive edges built by the parser (typically itpaths search)

unifications number of top-level calls into the feature structure unifaaroutine

copies number of top-level feature structure copies made
tcpu amount of cpu time (in milliseconds) spent in processing
space amount of dynamic memory allocated during processing (tledy

deficit in the area of precise and systematic, let alone cosl assessment
of grammar and system behaviour.

Oepen & Flickinger (1998) propose a methodology, termgeanmar pro-
filing, that builds on structured and annotated collections ofaes reference
data (traditionally known akest suites Thecompetence & performance pro-
filing approach we advocate in this play can be viewed as a gersi@tiz
of this methodology — in line with the experimental paradignggested by,
among others, Erbach (1991a) and Carroll (1994)caofnpetence & perfor-
mance profiles defined as a rich, precise, and structured snapshot @rmsyst
behaviour at a given development point. The production,nteaance, and
inspection of profiles is supported by a specialized softwaackage (called
[incr tsdb()]°) that supplies a uniform data model, an application program
terface to the grammar-based processing components, aptical facilities
for profile analysis and comparison. Profiles are stored @ladional database
which accumulates a precise record of system evolutionwdnich serves as
the basis for flexible report generation, visualizatiord data analysis via basic
descriptive statistics. All tables and figures used in thésy pvere generated
using[incr tsdb()].

The profiling environment defines a common set of descriptigtrics which
aim both for in-depth precision and also for sufficient gafiracross a variety
of processing systems. Most parameters are optional, than@lysis potential
may be restricted for partial profiles. Roughly, profile @mis can be clas-
sified into information on (i) the processimgvironmentgrammar, platform,
versions, parameter settings and others), (ii) gramniatioeerage(number
of analyses, derivation and parse trees per reading, pomdsg semantic
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Table 1.2. Reference data sets used in comparison and benchmarkimtheitinGO grammar.

1 2 3 4 5 6 7 8 9
total word lexical total parser passive fs
Set Aggregate items string entries results analyses edgesze s
i ¢ ¢ i o o ¢
tsnl wellformed 1574 P06 138 945 200 86 273
S0 iiformed 2775 450 115 409 183 39 257
csli wellformed 918 645 153 732 216 115 302
csl iiformed 375 611 149 85 231 84 298
‘aged  wellformed 96 841 231 72 7.00 292 315

wellformed 1910 113 321 1008 5139 1181 336

blend  iformed 142 1105 342 24 2033 611 317

formulae), (iii) ambiguitymeasures (lexical items retrieved, number of active
and passive edges, where applicable, both globally anepelt), (iv)resource
consumptiorfvarious timings, memory allocation), and indicators Qff{arser
andunifier throughput. Excluding relations and attributes that eecamhota-
tions on the input data, the curreadmpetence & performancatabase schema
includes some one hundred attributes in five relations. eTalll summarizes
some of the profiling parameters as they are relevant to tireato come.
While the currenfincr tsdb()] data model has already been successfully
adapted to six or so different parsing systems (with moreomay; see Act 6),
it remains to be seen how well it scales to the description lafger variety
of processing regimes. And although absolute numbers neusgielwed with
a grain of salt, the common metric has greatly increased acabgity and
data exchange among the groups mentioned above, and hasércases also
helped to identify unexpected sources of performance ti@niaFor example,
we have found that two Sun UltraSparc servers (at differigzg)swith identical
hardware configuration (down to the level of cpu revision)l &S release
reproducibly exhibit a performance difference of arouna per cent. This
appears to be caused by different installed sets of vengiptlied operating
system patches. Also, average cpu load and availabilityadh mmemory have
been observed to have a noticeable effect on cpu time measotg; therefore,
all data reported in this play, was collected in an (artificia some sense)
environment in which sufficient cpu and memory resourcesvgelaranteed
throughout each complete test run.
Thelincr tsdb()] package includes a number of test suites and development
corporafor English, German, and French (and has facifiliesser-level import
of additional test data). For benchmarking purposes wighLinGO grammar
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four test sets were chosen: (i) the EnglisdNLp test suite (Oepen, Netter, &
Klein, 1997), (ii) the CSLI test suite derived from the origl Hewlett-Packard
data (Flickinger, Nerbonne, Sag, & Wasow, 1987), (iii) a Broallection of
transcribed scheduling dialogue utterances collectelden/erbmobil context
(Wahlster, 2000), and (iv) a larger extract from later Viedbil corpora that was
selected pseudo-randomly to achieve a balanced distibati one hundred
samples for each input length below twenty words. Somerggbieperties of
these test sets are summarized in Table’ L8oking at the degrees of lexical
(i.e. the ratio between columns five and four), global (caisaven), and local
(approximated in column eight by the number of passive edgessted in pure
bottom-up parsing) ambiguity, the three test sets ranga frery short and
unambiguous to mildly long and highly ambiguous. Th#&ehd test set is
a good indicator of maximal input complexity that the avaldaparsers can
currently process (in plausible amounts of time and memo@pntrasting
columns six and three (i.e. items accepted by the grammadotad.numbers
of well- or ill-formed items) provides a measure of gramrmaticoverage and
overgeneration, respectively.

2. Strong Empiricism: A Few Examples

A fundamental measure in comparing two different versiansomfigurations
of one system as well as for contrasting two distinct systsmerrectness and
equivalence of results. No matter what unification algaomittr parsing strategy
is chosen, parameters like the numbers of lexical itemsevetd per input
word, total analyses found, passive edges derived (in medigiive bottom-
up parsing, at least) and others should only vary when thengia itself is
changed. Therefore, regular regression testing is redjuire debugging and
experimentation practice, we have found that minor divecgs in results are
often hard to identify; using an experimental parsing styat for example,
over- and undergeneration can even out for the number ofrmga@nd even
the accounting of passive edges. Hence, assuring an exttt maesults (for
a given test set) is a non-trivial task.

Thel[incr tsdb()] package eases comparison of results on a per-item basis,
using an approach similar to Wx diff (1), but generalized for structured
data sets. By selection of a set of parameters for inteme€tind optionally
a comparison predicate), the user interface allows oneawd® the subset of
items that fail to match in the selected properties. One dgiom that we found
especially useful in intersecting profiles is on the derratrees (a bracketed
structure labeled with rule names and identifiers of lexit&hs) associated
with each parser analysis. Once a set of missing or extraadiems (represent-
ing under- or overgeneration, respectively) between tvadilps is identified,
they can be fed back into the defective parser as a requegtand reconstruct
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each derivation. Reconstruction of derivation trees, iaress, amounts to fully
deterministic parsing, and enables the processor to regbeste the failure
occurs that caused undergeneration in the first place; caelyewhen dealing
with overgeneration, reconstruction in the correct pacser be requested to
identify the missing constraint(s). While these techngjiliestrate basic de-
bugging facilities that the profiling and experimentatiowieonment provides,
the following two scenes discuss algorithmic issues ingratesign and tuning
that can only be addressed empirically.

2.1 Hyper-Active Parsing

The two oldest development platforms within the consortidwiz. the LkB
(CSLI Stanford) andPAGE (DFKI Saarbiicken) systems — have undergone
homogenization of approaches and even individual modtihesqonjunctive
PAGE unifier, for instance, was developed by Rob Malouf at CSLhfta)
for quite a while? Until recently, however, the parsing regimes deployed én th
two systems were significantly different. Both parsers usasgdestructive
unification, are purely bottom-up, chart-based, perfornamdiguity packing,
and can be operated in exhaustive (all paths) or agendardbigst-first search
modes; before any unification is attempted, both parsery &pp same set of
pre-unification filters, viz. a test against a rule compéatybtable (Kiefer et
al., 1999), and the ‘quick check’ partial unification testgleuf, Carroll, &
Copestake, 2000). ThexB passive chart parser (in exhaustive mode) uses a
breadth-first CKY-like algorithm; it processes the inputsj strictly from left to
right, constructing all admissible complete constituevit®se right vertex is at
the current input position before moving on to the next lakiem. Attempts at
rule application are made from right to left. All and only cplete constituents
found (passive edges) are entered in the chart. The active parser, on the
other hand, uses a variant of the algorithm described byderfE091b). It
operates bidirectionally, both in processing the inpuhgtand instantiating
rules; crucially, th&keydaughter (see Scene 2.2 below) of each rule is analyzed
first, before the other daughter(s) are instantiated.

Butwhile theLkB and theeAGE developers both assumed the strategy chosen
in their own system was the best-suited for parsing withddegture structures
(as exemplified by the LinGO grammar), the choices are meiivby conflict-
ing desiderata. Not storing active edges (as in the pasgigearser) reduces
the amount of feature structure copying but requires fragrecomputation of
partially instantiated rules, in that the unification of aighter constituent with
the rightmost argument position of a rule is performed asyrtiames as the rule
is applied to left-adjacent sequences of candidate chgedsedCreating active
edges that add partial results to the chart, on the other, naqdires that more
feature structure copies are made, which in turn avoidsehessity of redoing



Table 1.3. Contrasting parser performance: passive, active, andagize in theLkB.

filler  etasks  stasks unifs  copies tcpu space

Set Parser
% ¢ ¢ ® ® #(s) ¢ (kb)
passive 94.2 658 555 663 114 -88 2329
‘csli active 958 283 180 288 180 81 2432

hyper-active 958 283 180 354 114 -28 1686

passive 94.2 1843 1604 1845 293 -14 5692
‘aged active 961 716 452 718 452 -03 5449
hyper-active 961 716 452 928 293 01 3830

passive 936 9209 7968 9214 1074 -&7 16757
‘blend active 960 2849 1580 2853 1580 -& 13767
hyper-active  96.0 2849 1580 4156 1074 -3 10393

(generated by [incr tsdb()] at 3-nov-1999 (19:08 h)

unifications. Given the effectiveness of the pre-unifigatiifters it is likely
that for some active edges no attempts to extend them witten inactive
edges will ever be executed, so that the copy associatedheitictive edge was
wasted effort. Profiling the two parsers individually shovileat overall perfor-
mance is roughly equivalent (with a minimal lead for the paesskKB parser in
both time and space). While the passive parser executesofar parser tasks
(i.e. unifications), it creates significantly fewer copieas-should be expected
from what is known about the differences in parsing stratdggnce, from a
superficial comparison of parser throughput one could cmgcihat the passive
parser successfully trades unifications for copies, andbtbth basic parsing
regimes perform equally well with respect to the LinGO graamm

To obtain fully comparable results, the algorithm usepAnk was imported
into theLKB, which serves as the (single) experimentation environrfugrithe
remainder of this scene. The direct comparison is shownliteTh 3 for three
of the standard test sets. The re-implementation of theegptirser in theks,
in fact, performs slightly better than the passive versiod does not allocate
very much more space. On thaged test set, the active parser even achieves a
modest reduction in memory consumption which most likeflems the larger
proportion of extra unifications compared to the savingsdpies (columns
five and six) for this test set. Having profiled the two tramitl parsing strate-
gies and dissected each empirically, it now seems natusjrithesize a new
algorithm that combines the advantages of both strateggesdduced unifica-
tion and reduced copying). The following algorithm, termed ‘hygetive’ by
Oepen & Carroll (2000), achieves this goal:
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= use the bottom-up, bidirectional, key-driven control teigg of the active
parser;

= when an ‘active’ edge is derived, store this partial analysithe chart
but donot copy the associated feature structiire;

= when an ‘active’ edge is extended (combined with a passige)ede-
compute the intermediate feature structure from the amlginle and
already-instantiated daughter(s);

= only copy feature structures for complete passive edgesapanalyses
are represented in the chart but the unification(s) thateléeach partial
analysis are redone on-demand.

Essentially, storing ‘active’ (or, in a sense, hyper-agtiedges without creating
expensive feature structure copies enables the parserftomea key-driven
search effectively, and at the same time avoids over-cggdgirpartial analyses;
additional unifications are traded for the copies that weoeded only where
hyper-active edges are actually extended in later praogssi

Table 1.3 confirms that hyper-active parsing combines te@atde proper-
ties of both basic algorithms: the number of copies madeastbxthe same
as for the passive parser, while the number of unificatiormmig moderately
higher than for the active parser (due to on-demand recatipntof interme-
diate structures). Accordingly, average parse times aheced by twenty six
(‘csli’) and thirty seven @ged) per cent, while memory consumption drops by
twenty seven and thirty two per cent, respectively. Appitime three parsers to
the much more challenginglend test set reveals that the greater search space
poses a severe problem for the passive parser, and limitsltiee advantages
of the hyper-active over the plain active strategy somewlvatle in the latter
comparison the amount of copying is reduced by one third pelactive pars-
ing, the number of unifications increases by thirty per cetitesame time (but
see the discussion of rule instantiation below). Still,higper-active algorithm
greatly reduces memory consumption, which by virtue of logarbage collec-
tion times (not included itcpuvalues) results in a significant overall speed-up.
Compared to the originalkB passive parser, hyper-active parsing achieves a
time and space reduction of forty three and thirty eight st crespectively.
Thorough profiling and eclectic engineering have resuheahiimproved pars-
ing algorithm that is now used standardly in both thes and PAGE; for the
German and Japanese Martbil grammars irpAGe, the observed benefits of
hyper-active parsing were broadly confirmed.
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Figure 1.1. Effects of head- vs. key-driven rule instantiation on paveerk load (blend).
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2.2 Rule Instantiation Strategies

Head-driven approaches to parsing have been exploredssfigthe with lexi-
calized grammars likeipsc (see van Noord, 1997, for an overview) because,
basically, they can avoid proliferation of partial rule tastiations (i.e. active
edges in a chart parser) with rules that contain very unBpexrigument po-
sitions. Many authors either implicitly (Kay, 1989) or eijily (Bouma &
van Noord, 1993) assume thieguistic headto be the argument position that
the parser should instantiate first. However, the rightahoif argument posi-
tion in each rule, such that it best constrains rule applitabwith respect to all
categories derived by the grammar) cannot be determindgti@afly. Though
the selection is likely to be related to the amount and spégifof information
encoded for each argument, for some rules a single featlwre (e&ag. théwH -+
constraint on the non-head daughter in one of the instaomi&bf the filler—
head schema used in LinGO) can be the most important. Foirtelogical
clarity, PAGE has coined the terrkey daughter to refer to the argument posi-
tion in each rule that is the best discriminator with respgeaither categories
that the grammar derives; at the same time, the notidkepfdrivenparsing
emphasizes the observation that for individual rules inrtiqudar grammar a
non-(linguistic)head daughter may be a better candidate.

Figure 1.1 compares parser performance (usingttieparser; see below)
for a rule instantiation strategy that always fills the (lirgjic) head daughter
first (labelled head-driver) with a variant that uses an idiosyncratically chosen
key daughter for each rule (termekky-drivery see below for key selection).
The data shows that the number of execuetdgk$ as well as the number of
successfulgtask} parser actions increase far more drastically with resfmect
input length in the head-driven setup (on thkehd test suite, truncated above
20 words due to sparse data). Since parser tasks are deentiyated to overall
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Table 1.4. Head and key positions and distribution of active vs. passilges for selected rules.

Rule Name head key left s ri ga;letdg?;ht o left pedges ratio
HEAD — COMPLEMENT left left 84,396 1,404,652 264,137 -13
SPECIFIER — HEAD right  right 582,736 108,450 14,849 .16
SUBJECT — HEAD right  left 48,464 364,846 300,561 -A®
HEAD — MARKER left left 1,494 1,404,652 106,349 1B
HEAD — ADJUNCT (Scopa) left  right 856,419 12,946 73,975 A
ADJUNCT —HEAD (isectivg right left 34,482 1,260,660 37,343 (B
ADJUNCT —HEAD (scopa) right left 11,177 1,260,660 119,513 B9
FILLER —HEAD (Wh, sub)  right left 162 147,636 546 .37

parser performance, the key-driven strategy on averageesgarsing time by
more than a factor of two. Clearly, for the LinGO grammar asltelinguistic
headedness is not a good indicator for rule instantiatiamus] the choice of
good parsing keys for a particular grammar is an entirelyigogbissue. Key
daughters, in the current setup, are stipulated by the geanemgineer(s) as
annotations to grammar rules; in choosing the key positidresgrammarian
builds on knowledge about the grammar and observationsgerging test data.
The[incr tsdb()] performance profiling tools can help in this choice sincg the
allow the accounting of active and passive edges to be biaden by individual
grammar rules (as they were instantiated in building edgéspecting the
ratio of edges built per rule, for any given choice of parskeys, can then
help to identify rules that generate an unnecessary numbactve edges.
Thus, in the experimental approach to grammar and systemiaption the
effects of different key selections can be analyzed prceed compared to
earlier results! Table 1.4 shows the head and key positions together with the
differences in the number of active edges derived (in deftto right vs. right
to left rule instantiation modes) for a subset of binary greanrules in LinGO.
For the majority of head —argument structures (with the lrletaxception of
the subject—head rule) the linguistic head correspondsett&ey daughter, in
adjunction and (most) filler—head constructions we seedherse; for some
rules, choosing the head daughter as the key can result ncerase of active
edges close to two orders of magnitude.

Inspecting edge proliferation by individual rules reveatmther property
of the particular grammar: the ratio of passive to activeesdgolumn seven
in Table 1.4, using the key-driven values fedge} varies drastically. The
specifier—head rule, for example, licenses a large numbactivie edges but,
on average, only one out of seven active edges can be cochpteigeld a
passive edge. The head —marker rule, on the other hand, cagavgenerates
seventy one passive edges from just one active edge. Whilletimer should
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certainly benefit from hyper-active parsing, this seemy wmlikely for the
latter; Scene 2.1 above suggests that no more than threeatioifis should
be traded for one copy in thexB. Therefore, it seems plausible to apply the
hyper-active parsing regime selectively to rules withelgeso aedgegatio
below a certain threshold

3. PET — Synthesizing Current Best Practice

PET is a platform to build processing systems based on the gitiserformalism
represented by the LinGO grammar. It aims to make experigioent with
constraint-based parsers easy, including comparisonstfreextechnigues and
evaluating new approaches. Thus, flexibility and exteltitibare primary
design objectives. Both desiderata are achieved by a toohpproach PET
provides an extendible set of configurable building blobles tan be combined
and configured in different ways to instantiate a concretegssing system.
The set of building blocks includes objects likkart, agenda grammatr type
hierarchy, andtyped feature structureUsing the available objects, a simple
bottom-up chart parser, for instance, can be realized iwdifes of code.

Alternative implementations of a certain object may be latée to allow
comparison of different approaches to one aspect of pringessa common
context. For example, the curreptT environment provides a choice of de-
structive, semi-destructive, and quasi-destructive amantations of thgyped
feature structureobject (viz. the algorithms proposed by Wroblewski (1987),
Ciortuz (2001), Tomabechi (1991), and Malouf et al. (2000)) this setup
properties of various graph unification algorithms andueastructure repre-
sentations can be compared among each other and in interadgth different
processing regimes.

Inaparser calledheap, pPET implements all relevant techniques from Kiefer
et al. (1999) (i.e. conjunctive-only unification, rule fikequick-check, restric-
tors), as well as techniques originally developed in otlystesns (e.g. key-
driven parsing fronPAGE, caching type unification and hyper-active parsing
from theLk B, and partial expansion from DFKHIC). Re-implementation and
strict modularization often resulted in improved repréagons and algorithmic
refinement; since individual modules can be specializedfparticular task,
the overhead often found in monolithic implementationke(lslots in internal
data structures, say, that are only required in a certaifigroation) could be
reduced.

Efficient memory management and minimizing memory consionpias
another important consideration in the developmentrf. Experience with
Lisp-based systems suggests that memory throughput isfdhe main bot-
tlenecks when processing large grammars. In fact, one wiser close cor-
relation between the amount of dynamically allocated mgmaad processing
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time, indicating much time is spent moving data, rather thattual computa-
tion. Using builtin C++ memory management, allocation agldase of feature
structure nodes can account for up to forty per cent of tamaltrme. Like

in the WAM (Ait-Kaci, 1991), a general memory allocation scheme allgwin
arbitrary order of allocation and release of structuresoisnecessary in this
context. Within a larger unit of computation, the applioatof a rule, say, the
parser typically builds up structure monotonically; meynisronly released in
the case of a top-level unification failure when all parttalisture built during
this unification is freed. ThereforegT employs a simple stack-based memory
management strategy, acquiring memory from the operagstes in large
chunks which are then sub-allocated mark —releasenechanism allows sav-
ing the current allocation state (the current stack pasjtamd returning to that
saved state at a later point. Thus, releasing a chunk of tsbggoounts to a
single pointer assignment.

Also, feature structure representations are maximallypzmti? In com-
bination with other memory-reducing techniques (e.g.iglaexpansion and
shrinking, substructure sharing, hyper-active parsihg tesults in very at-
tractive memory consumption characteristics for theap parser, allowing
it to process theblend test set with a process size of around one hundred
megabytes (where Lisp- or Prolog-based implementatiosisyeaow beyond
half a gigabyte). To maximize compactness and efficiariey,is implemented
in ANSI C++, but uses traditional C representations (rathan C++ objects)
for some central objects where minimal overhead is requieegl. the basic
feature structure elements).

4. Quantifying Progress

The preceding acts have exemplified the benefits of competand perfor-
mance profiling applied to isolated properties of varioussiog algorithms.
In this penultimate act we take a slightly wider perspectiad use the profil-
ing approach to give an impression of overall progress magedcessing the
LinGO grammar over a development period of three years. Tdesbavailable
profiles (for the tsnlg and ‘aged test sets) were obtained withhGE (version
2:0 released in May 1997) and the October 1996 version of themax; the
current best parsing performance, to our best knowledgachfeved in the
cheap parser ofPET. All data was sampled on the same Sun UltraSparc server
(dual 300 megahertz; 1.2 gigabytes memory; mildly patcheldrs 2.6) at
Saarbiicken.

The evolution of grammatical coverage is depicted in Tabe dontrasting
salient properties from the individual competence profite® Table 1.2) side
by side; to illustrate the use of annotations on the test dag¢atable is further
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Table 1.5. Development of LinGO grammatical coverage and overgeiograver three years.

test October 1996 August 1999
Test Set items lexical parser in out lexical parser in out
# ¢ ¢ % % ¢ ¢ % %
‘tsnlp’ test set 4463 232 175 653 267 267 221 767 265
S_Types 174 20 216 787 400 337 124 960 516
C_Agreement 123 B9 133 588 100 227 128 779 100

C_Complementation 1010 -25 219 622 121 299 167 831 105
C_Diathesis-Passive 220 -5B 287 253 81 352 352 505 63

NP_Agreement 1196 56 106 478 148 170 121 622 159
Other 1740 28 172 732 549 270 266 799 533
‘aged’ test set 95 211 255 658 — 274 700 750 —

(generated by [incr tsdb()] at 5-nov-1999 (17:11 h))

broken down by selected syntactic phenomena fortha.p data (Oepen et al.,
1997, give details of the phenomenon classification). Corsaof thelexical
andparseraverages shows a modest increase in lexical but a drametéaise
in global ambiguity (by close to a factor of three faged). Columns labeled
in andout indicate coverage of items marked wellformed and overgsiuer
for ill-formed items, respectively. While thaged test set does not include
negative test items, it confirms that coverage within theolebil domain has
improved. However, thesNLP test suite is far better suited to gauge develop-
ment of grammatical coverage, since it was designed torsyieally exercise
different modules of the grammar. In fact, a net increaseowerage (from
sixty five to seventy seven per cent) in conjunction withtgligreduced over-
generation confirms that the LinGO grammar engineers haaglity improved
the overall quality of the linguistic resource.

The assessment of parser performance shows a more draenalogment.
Average parsing times per test item (on identical hardwhag® dropped by
more than two orders of magnitude (a factor of two hundredsawdnty on the
‘aged data), while memory consumption was reduced to about twacpat
of the original values. Because in the earyGE data the ‘quick-check’ pre-
unification filter was not available, current filter rates faT (and the other
systems alike) are much better and result in a reduction fepdasks that
are actually executed. At the same time, comparing the numibpassive
edges licensed by the two versions of the grammar providexd gstimate
on the size of the search space processed by the two pardtirsugh for the
(nearly) ambiguity-freersNLp test suite thpedgesverages are almost stable,
the ‘aged data shows an increase by a factor of three. Assertingtleat\erage
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Table 1.6. Development of salient performance parametess:€ vs. PET) over three years.

. filter etasks pedges tcpu space
Version Platform Test Set
% ¢ ¢ ¢ (s) ¢ (kb)
‘tsnip 49.9 656 44 369 19016
October 1996 PAGE ‘aged 513 1763 97 3669 79093
‘tsnip 939 170 55 003 333
August 1999 PET ‘aged 95-1 753 292 o4 1435

‘blend 95.5 3084 1140 ®5 10589

(generated by [incr tsdb()] at 5-nov-1999 (21:23 h)

number of passive edges is a direct measure of input contyplexith respect
to a particular grammar), we extrapolate the overall speei; processing
the LinGO grammar as a factor of roughly eight hundred (adepuvalues in
Table 1.6 daootinclude garbage collection fenGE which in turn is avoided in
PET; hence, the net speed-up is more than three orders of mdghitkinally,
Table 1.6 include®ET results on the currently most challengingend test
set (see above). Despite of greatly increased search spdaniguity, the
cheap parser achieves an average parse time of 650 millisecondsracesses
almost ninety per cent of the test items in less than one seiéon

5. Multi-Dimensional Performance Profiling

The preceding acts have demonstrated hovjittee tsdb()] profiling approach
enables comparison over time and across platforms, usegdime grammar
and reference input in both cases. In this final applicatidgheframework, we
draw the curtain wide open and attempt a contrastive stushgadeveral dimen-
sions simultaneously. The basic theme of the exercise stiueh for a reliable
point of comparison across two distinct (though, of couadstractly similar)
systems, using different grammars (of different langupgesl unrelated test
data.

Table 1.7 summarizes a number of performance metrics faordifierent
configurations that result from the cross product of appjyiimo distinct pro-
cessing environments (viz. thexs and PET) to two distinct grammars (the
LinGO grammar and the Japanesesc developed within Vertmobil; see
Siegel, 2000). While of course within each row the resultsbfath platforms
were profiled against the same data set (viz. a sample of ausadahd sen-
tences randomly extracted from English and Japanesanibcorpora, re-
spectively), the exact details of the two test corpora vatimatter for the present
exercise; besides asserting a general, if rough similaritrigin and average
length, nothing in the following paragraphs will hinge omménent properties
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Table 1.7. The matrix: simultaneous cross-grammar, cross-platfamparison.

LKB PET Speed-Up
aedges 854 aedges 854
pedges 1850 pedges 1850
. etasks 5946 etasks 6541
English stasks 2695 | stasks 2661 ~5.34
tcpu 2.96s tcpu 0.56 s
space 16894 kb space 3436 kb
aedges 153 aedges 153
pedges 725 pedges 725
etasks 950 etasks 893
Japanese stasks 851 stasks 851 ~8.40
tcpu 0.56s tcpu 0.07 s
space 4053 kb space 604 kb
Speed-Up ~5.29 ~ 8.10

of the test data. As both systems implement the same comrped tature
structure formalism (see Section 1 above) and obeyitiee tsdb()] applica-
tion program interface, the matrix is complete and for eamhesponding pair
it has been confirmed that the results across systems yialgasn match (the
minor diversions in task accounting are due to slightlyedtédht sets of ‘quick
check’ paths and to a technical difference in how inflectionkes are applied
by PET). Therefore, the complete symmetric matrix allows cotivasnalyses
both across grammars (vertically comparing within a coluamd across plat-
forms (horizontally comparing within a row). Before loogimat the diagonals
of the matrix — comparing across grammars and platformslsmeously —we
will use the available data to observe a number of relevéfdrdnces in the
two grammars and parsing systems, respectively.

Comparing the two grammars, it seems to be the case that flameke
grammar presents a smaller challenge to the processingnsykan is posed
by the English grammar: while the absolute differencesénttal numbers of
passive edges (as a measure of global ambiguity, say) amdllgvarse times
could in principle be a property of different test corpora.(suggest that the
Japanese sample on average was significantly less ambigndutherefore
easier to analyze than the English data), putting the tweoicsénto proportion
reveals a genuine difference between the two grammars. nfisguhat the
average cost to build a single passive edge is relativelggaddent of the
input data, the ratio of passive edges built per second igB&§lish) to 1295
(Japanese) for thexks and 3304 to 10357, respectively, feeT. Further
looking at the average size of a passive edge — i.e. reldimgverage amount
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of dynamically allocated memory during parsirspéce to the total number of
passive edges built — suggests an explanation for the higiséper edge in the
English grammar: the ratio @paceper passive edge is®kb (English) to 56
kb (Japanese) for the<s (i.e. aratio of 166) and 19 kb to 08 kb, respectively,
for PET (i.e. a ratio of 238). Ignoring the somewhat surprising mismatch in
exactly how much less memory is allocated per edge for thenge grammar
in the two platforms for a moment, parsing with the Japanesmmar clearly
seems to take both less time and meméiyhe difference in average allocation
per passive edge (the ratios $ = 1-66 for theLks constrasted with3
= 2-38 for PET, on the other hand, points to another differences betwezn th
grammars that, in turn, makes an asymmetry between the atfophs surface.
Unlike the LKB, the PET grammar preprocessor deploys a technique known
asunfilling (Gotz, 1993; Gerdemann, 1995; Callmeier, 2000) — essentally
recursive elimination of information in feature structutlat is implicit in the
type of the structure — to reduce feature structure sizeratinoe. While the
English LinGO grammar has been hand-tuned to achieve act sffeilar to
unfilling through an increased use of types (Flickinger, ®08uch a manual
optimization has not been applied to the Japanese gramroaardingly, PET
obtains a bigger bonus from the unfilling operation for stites of the Japanese
grammar than it does for English (while thes in both cases uses the complete
structures). The unfilling advantage on the Japanese graaisteexplains the
observed difference in the ratios of average cost per passige (measured as
pedgeger secondiZl = 2.07 for theLkB vs. 1227 = 3.13 for PET); again,
the comparatively better performancerafr on the Japanese grammar almost
exactly equals the relative ratio in edge si%e%( = 0-66 vs. % = 0-69).
We can therefore conclude that the overall vertical spgedaross the two
grammars (29 for theLkB and 810 for PET) accumulates three factors, viz.
(i) reduced processing complexity (partly due to smallatdes structures) for
the Japanese grammar, (ii) reduced test corpus compléaigcEount for the
additional speed-up over the factor-of-two decrease ihpmredge observed in
thevLkB), and (iii) increased unfilling efficiency (explaining wigT performs
relatively better on the Japanese than on the English gramma

Finally, what if we pretended that the comparison matrix waly partially
available, say providing one profile of th&s applied to the English gram-
mar and another sample eET processing the Japanese grammar? At first,
it seems, nothing much can be concluded from the observiiadpET takes
0-07 seconds to solve one problem while tireB requires 26 seconds to
solve a different problem. Without knowledge about the claxipy of the
actual problem, relating raw processing times must be cetelyl uninforma-
tive. To arrive at a comparative assessment of relativaopagnce for the two
systems, instead, would require a derived measure of dameetdor inherent)
complexity, a metric that with sufficient confidence can bgested to provide
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a stable predictor of processing cost independent of thmmiar and type of
test data. From some of the observations reviewed in thequeyaragraphs,
it follows that the rate of passive (or active) edges per)speond will not be a
good measure because the proportion of successful vagfaitiifications may
vary drastically across grammars (and indeed does for tteeid&able 1.7),
where only succeeding unifications will be reflected as areadghe chart.
By the same token, looking atasksper second would suffer from the same
potential for skewing.

But what about the ratio of executed parser actia@iagk} per second of
total parsing time? Applying this metric to the problem ahdhawe obtain
12157 — 6:35 and115%0 — 7.68 for the lower right to upper left and upper right
to lower left diagonals of Table 1.7, respectively. If exetlitasks per sec-
ond was a suitably independent metric, the diagonal commanvould thus
predict thatPeT is between a factor of-85 and 768 more efficient that the
LKB. Looking at the actual values — speed-ups-8#5and 840 on the English
and Japanese grammars, respectively — the predictionsigrrably accurate; it
would indeed seem that the average cost of executing a gagter task is a
relatively stable indicator of overall system efficiendyeast for two platforms
that despite all technical differences share a large nuwifidsasic assumptions
and design. At this point, however, we can only speculataitaimy etasks
per seconds appears to be a surprisingly good metric ofréalsefficiency
for the two systems considered. Firstly, total parsing siraee dominated by
feature structure manipulation, that is calls to the uniibceand copy routines;
executing a parser task is the fundamental operation thah@st cases) re-
quires exactly one unification and, for some subset of tadks,a subsequent
copy. Independent of the unification to copy cost and theaatifin failure to
success ratios, all constraint solver activity somehowiogites in a task ex-
ecution. Secondly — even with moderate-size and mildly gontnis test data
— the number of executed tasks will be very large and thezetfoe ratio of
etaskger cpu second has been found to be quite stable acrossy&egirdata
or grammars. Thirdly, where two (closely related) systemesiiporate similar
approaches to parsing and reducing search, the numbesefpasks that come
to be executed will correlate in some informal sense to the sf the search
space (or problem complexity) that has been explored; fibvereelating it to
the time that a system takes to solve that problem yields auneaf efficiency.
Obviously, these conclusions are necessarily prelimiaad~ given remaining
noise in the cost per parser task across platforms and gresnthe metric
proposed can only approximate relative efficiency; indésuking at another
broad-coverageipsc — viz. the German Vemobil grammar — we found the
general prediction confirmed but the variance of diagonaigarison slightly
larger than with the English—Japanese pairing.



ACKNOWLEDGMENTS 19

6. Conclusion — Recent Developments

Precise, in-depth comparison has enabled a large, muitirhgroup of devel-
opers to quantify and exchange algorithmic knowledge amefitefrom each
others experience. Thmcr tsdb()] profiling package has been integrated with
some Six processing environments far§G-type) unification grammars and
has thus facilitated a previously unmatched degree of devibzation. Many
of the parameters of variation in system design and optitiiza including the
choice of parsing strategy, feature structure encodingyuaffication scheme —
require detailed knowledge about the relative contrilmgiof sub-tasks (feature
structure unification vs. copying, for example) to the ollggeoblem size as
well as a fine-grained, accurate understanding of whichcasoé the problem
(as defined by the grammar and input data) are especiallydmatide proces-
sor. Our integrated competence and performance profilipgoagh aims to
make appropriate data and suitable analysis techniquéaldeato grammar
and system engineers.

The modularkeT platform provides an experimentation tool box that allows
developers to combine various encoding and processingitreds and rapidly
assess both their strong and weak points. The attractietigabperformance
of the cheap parser has made it the preferred run-time system for test set
processing in the development of several large-seate: grammarsPET has
also been successfully deployed in commercial products.

As this play was first brought to stage early in 2000, obviptisere have
been a number of recent developments not reflected here.nBaybat was
shown in Acts 3 through 5, the range of experimental choicexi has been
increased significantly, particularly in the areas of fixety feature structure
encodings (in the tradition of Prolog compilation) and aguitty packing (from
theLkB). Callmeier (2002) presents an empirical study compahedenefits
of various feature structure encoding techniques. A teicbpic view of col-
laborative activities among the groups is compiled by Ogp&ckinger, Tsujii,

& Uszkoreit (2002).
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Notes

1. Seehttp://www.dfki.de/1t/’ and http://www.coli.uni-sb.de/’ for information on the
DFKI Language Technology Laboratory and the Computatiairajuistics Department at Saarland Univer-
sity, respectively.

2. The http://lingo.stanford.edu/’ web pages lisupsa-related projects and people involved
at CSLI, and also provide an on-line demonstration ofitke system and LinGO grammar.

3. Information on the Tokyo Laboratory, founded and mandgedrofessor Jun-ichi Tsuijii, can be
found at http://wuw.is.s.u-tokyo.ac.uk/"

4. In thenpsc universe (and accordingly our present play) the term ‘gramiis typically used
holistically, referring to the linguistic system compusef (at least) the type hierarchy, lexicon, and rule
apparatus.

5. (Meta-)Systems likeLEUK (Calder, 1993) an@ipruc (van Noord & Bouma, 1997) that facilitate
the exploration of multiple descriptive formalisms andgassing strategies come with slightly more sophis-
ticated benchmarking facilities and visualization todtdowever, they still largely operate on monolithic,
unannotated input data sets, restrict accounting of sysgeutts to a small number of parameters (e.g. num-
ber of analyses, overall processing time, memory consempgiossibly the total number of chart edges),
and only offer a limited, predefined choice of analysis views

6. Seehttp://www.coli.uni-sb.de/itsdb/’for the (draft)[incr tsdb()] user manual, pronunci-
ation rules, and instructions on obtaining and installimg package.

7. While wellformedness and item length are propertiesefekt data proper, the indicators for average
ambiguity and feature structure (fs) size were obtainedgutie release version of the LinGO grammar,
frozen in August 1999. Here and in the tables to come the stindicates absolute numbers, whilé'*
denotes average values. Coverage onlitent corpus is comparatively low, as it includes Verbbil data
(specifically vocabulary) that became available only aftergrammar had been frozen for our experiments.

8. Still, the two systems are by no means merely two instiémiis of the same concept, and continue
to focus on different application contexts. While thes is primarily used for grammar development,
education, and generation (in an AAC basic research pjpjeatE develoment since 1997 has emphasized
robust parsing methods with speech recognizer output ticaion to Verlmobil).

9. Although the intermediate feature structure is not abpieis used to compute the ‘quick-check’
vector for the next argument position to be filled; as was sé@ady, this information is sufficient to filter
the majority (i.e. up to ninety five per cent) of subsequemrations on the ‘active’ edge.

10. There is an additional element — termed ‘excursion’ -hgoaigorithm proposed in Oepen & Carroll
(2000) that aims to take advantage of the feature strucksecated with an active edge while it is still
valid (i.e. within the same unification generation). Putglynthe hyper-active parser is allowed to deviate
slightly from the control strategy governed by the agendayyt and combine the active edge with one
suitable passive edge immediately.

11. For a given test corpus, the optimal set of key daughterdbe determined (semi- or fully automati-
cally) by comparing results for unidirectional left to rigl pure right to left rule instantiation; the optimal
key position for each rule is the one that generates the sstaumber of active items.

12. The size of one dag node in thet implementation of Tomabechi (1991) is only twenty four lsyte
compared to, for example, fifty six in the Lisp-basad3 system.

13. To obtain the results on thblend test set shown in Table 1.6, an upper limit on the number of
passive edges was imposed in teap parser; with a permissible maximum of twenty thousand edges
around fifty (in a sense pathological) items from thkehd set cannot be processed within the limit and,
accordingly, are excluded in the overall assessment. Malqarsing times for the remaining test items
range to around fourteen seconds for input strings thaoappate twenty thousand edges and derive a very
large number of readings.
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14. The calculation of average allocation cost per pasdgige és, of course, only approximative in
that other computation — primarily dag and arc allocationsng failed unification attempts and the edge
structures themselves — also contributes to overall mecmrgumption. However, both platforms utilize a
hyper-active chart parser, so that active edges do not hiaguae structure associated with them; likewise,
a high filter efficiency reduces the number of failed unificasi, such that (the feature structures associated
with) passive edges certainly account for the bulk of dymaafibcation.
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