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Abstract Over the past few years, significant progress has been made inefficient processing
with wide-coveragehpsggrammars.hpsg-based parsing systems are now avail-
able that can process medium-complexity sentences (of ten to twenty words, say)
in average parse times equivalent to real (i.e. human reading) time. A large num-
ber of engineering improvements in currenthpsg systems have been achieved
through collaboration of multiple research centers and mutual exchange of expe-
rience, encoding techniques, algorithms, and even pieces of software. This article
presents an approach to grammar and system engineering, termedcompetence
& performance profiling, that makes systematic experimentation and the precise
empirical study of system properties a focal point in development. Adapting
the profiling metaphor familiar from software engineering to constraint-based
grammars and parsers enables developers to maintain an accurate record of sys-
tem evolution, identify grammar and system deficiencies quickly, and compare
to earlier versions or between different systems. We discuss a number of exam-
ple problems that motivate the experimental approach, and apply the empirical
methodology in a fairly detailed discussion of progress made during a develop-
ment period of three years.

1



2

Dramatis Personæ

Let there be some more test made of my metal,
Before so noble and so great a figure

Be stamp’d upon it.
(Shakespeare, 1623)

[...] we view the discovery of parsing strategies as a largely exper-
imental process of incremental optimization. (Erbach, 1991a)

[...] the study and optimisation of unification-based parsing must
rely on empirical data until complexity theory can more accurately
predict the practical behaviour of such parsers. (Carroll, 1994)

Early in 1994, research groups at Saarbrücken1 (Uszkoreit et al., 1994) and
CSLI Stanford2 (Copestake, 1992; Flickinger & Sag, 1998) started to collab-
orate on the development of large-scalehpsg grammars, suitable grammar
engineering platforms, and efficient processors. While both sites had worked
onhpsg implementation before, the joint effort has greatly increased produc-
tivity, resulted in a mutual exchange of knowledge and technology, and helped
build a collection of grammar development environments, several highly en-
gineered parsers (Kiefer, Krieger, Carroll, & Malouf, 1999) and an efficient
generator (Carroll, Copestake, Flickinger, & Poznanski, 1999). Around 1998,
the grammar formalisms and parsing group at Tokyo University3 (Torisawa &
Tsujii, 1996) made an entrance on stage and now supplies additional expertise
on (abstract-machine-based) compilation of typed featurestructures, Japanese
hpsg, and grammar approximation techniques. More recently, people from
Cambridge, Edinburgh, and Sussex Universities (UK) and from the Norwegian
University of Science and Technology (in Trondheim) have also joined the cast.

Although their individual systems often supply extra functionality, the groups
have converged on a common descriptive formalism – a conservative blend of
Carpenter (1992), Copestake (1992), and Krieger & Schäfer (1994) – that allows
grammars4 to be processed by (at least) five different platforms. The LinGO
grammar, a multi-purpose, broad-coverage grammar of English developed at
CSLI and among the largesthpsg implementations currently available, serves
as a common reference for all three groups (while of course the sites continue
development of additional grammars for English, German, and Japanese). With
one hundred thousand lines of source, roughly eight thousand types, an average
feature structure size of some three hundred nodes, twenty seven lexical and
thirty seven phrase structure rules, and some six thousand lexical (stem) en-
tries, the LinGO grammar presents a difficult challenge for processing systems.
While scaling the systems to this rich set of constraints andimproving process-
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ing and constraint resolution algorithms, the groups have regularly exchanged
benchmarking results, in particular at the level of individual components, and
discussed benefits and disadvantages of particular encodings and algorithms.
Precise comparison was found essential in this process and has facilitated a
degree of cross-fertilization that proved beneficial for all participants.

Act 1 below introduces the profiling methodology, supporting tools, and
the sets of common reference data and benchmarking metrics that were used
among the groups. By way of example, the profiling metaphor isthen applied
in Act 2 to a choice of engineering issues that (currently) can only be ap-
proached empirically. Act 3 introduces thepet platform (Callmeier, 2000) as
another actor in the experimental setup;pet synthesizes a variety of techniques
from the individual systems in a fresh, modular, and highly parameterizable
re-implementation. On the basis of empirical data obtainedwith pet, Act 4
provides a detailed comparison of competence and performance profiles ob-
tained in October 1996 with the development status three years later. Finally,
Act 5 applies some of the metrics introduced earlier to a multi-dimensional,
cross-grammarand cross-platform comparison.

1. Competence & Performance Profiling

In system development and optimization, subtle algorithmic and implemen-
tational decisions often have a significant impact on systemperformance, so
monitoring system evolution very closely is crucial. Developers should be en-
abled to obtain a precise record of the status of the system atany given point;
also, comparison with earlier results, between various parameter settings, and
across platforms should be automated and integrated with the regular develop-
ment cycle. System performance, however, cannot be adequately characterized
merely by measurements of overall processing time (and perhaps memory us-
age). Properties of (i) individual modules (in a classical setup, especially the
unifier, type system, and parser), (ii) the grammar being used, and (iii) the input
presented to the system all interact in complex ways. In order to obtain an ana-
lytical understanding of strengths and weaknesses of a particular configuration,
finer-grained records are required. By the same token, developer intuition and
isolated case studies are often insufficient, since in practice, people who have
worked on a particular system or grammar for years still find that an intuitive
prediction of system behaviour can be incomplete or plainlywrong.

Although most grammar development environments have facilities to batch-
process a test corpus and record the results produced by the system, these
are typically restricted to processing a flat, unstructuredinput file (listing test
sentences, one per line) and outputting a small number of processing results
into a log file.5 In total, we note a striking methodological and technological
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Table 1.1. Some of the parameters making up a competence & performance profile.

readings number of complete analyses obtained (when applicable, after unpacking)

filter percentage of parser actions predicted to fail (rule filter plus ‘quick check’)
etasks number of attempts to instantiate an argument position in a rule
stasks number of successful instantiations of argument positionsin rules
aedges number of active edges built by the parser (where appropriate)
pedges number of passive edges built by the parser (typically in all-paths search)

unifications number of top-level calls into the feature structure unification routine
copies number of top-level feature structure copies made

tcpu amount of cpu time (in milliseconds) spent in processing
space amount of dynamic memory allocated during processing (in bytes)

deficit in the area of precise and systematic, let alone comparable, assessment
of grammar and system behaviour.

Oepen & Flickinger (1998) propose a methodology, termedgrammar pro-
filing, that builds on structured and annotated collections of test and reference
data (traditionally known astest suites). Thecompetence & performance pro-
filing approach we advocate in this play can be viewed as a generalization
of this methodology – in line with the experimental paradigmsuggested by,
among others, Erbach (1991a) and Carroll (1994). Acompetence & perfor-
mance profileis defined as a rich, precise, and structured snapshot of system
behaviour at a given development point. The production, maintenance, and
inspection of profiles is supported by a specialized software package (called
[incr tsdb()]6) that supplies a uniform data model, an application programin-
terface to the grammar-based processing components, and graphical facilities
for profile analysis and comparison. Profiles are stored in a relational database
which accumulates a precise record of system evolution, andwhich serves as
the basis for flexible report generation, visualization, and data analysis via basic
descriptive statistics. All tables and figures used in this play were generated
using[incr tsdb()].

The profiling environment defines a common set of descriptivemetrics which
aim both for in-depth precision and also for sufficient generality across a variety
of processing systems. Most parameters are optional, though analysis potential
may be restricted for partial profiles. Roughly, profile contents can be clas-
sified into information on (i) the processingenvironment(grammar, platform,
versions, parameter settings and others), (ii) grammatical coverage(number
of analyses, derivation and parse trees per reading, corresponding semantic
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Table 1.2. Reference data sets used in comparison and benchmarking with the LinGO grammar.

1 2 3 4 5 6 7 8 9

total word lexical total parser passive fs
Set Aggregate items string entries results analyses edges size

♯ φ φ ♯ φ φ φ

‘tsnlp’
wellformed 1574 4·96 13·8 945 2·00 86 273
illformed 2775 4·50 11·5 409 1·83 39 257

‘csli’
wellformed 918 6·45 15·3 732 2·16 115 302
illformed 375 6·11 14·9 85 2·31 84 298

‘aged’ wellformed 96 8·41 23·1 72 7·00 292 315

‘blend’
wellformed 1910 11·13 32·1 1008 51·39 1181 336
illformed 142 11·05 34·2 24 20·33 611 317

formulae), (iii) ambiguitymeasures (lexical items retrieved, number of active
and passive edges, where applicable, both globally and per result), (iv)resource
consumption(various timings, memory allocation), and indicators of (v) parser
andunifier throughput. Excluding relations and attributes that encode annota-
tions on the input data, the currentcompetence & performancedatabase schema
includes some one hundred attributes in five relations. Table 1.1 summarizes
some of the profiling parameters as they are relevant to the drama to come.

While the current[incr tsdb()] data model has already been successfully
adapted to six or so different parsing systems (with more underway; see Act 6),
it remains to be seen how well it scales to the description of alarger variety
of processing regimes. And although absolute numbers must be viewed with
a grain of salt, the common metric has greatly increased comparability and
data exchange among the groups mentioned above, and has in some cases also
helped to identify unexpected sources of performance variation. For example,
we have found that two Sun UltraSparc servers (at different sites) with identical
hardware configuration (down to the level of cpu revision) and OS release
reproducibly exhibit a performance difference of around ten per cent. This
appears to be caused by different installed sets of vendor-supplied operating
system patches. Also, average cpu load and availability of main memory have
been observed to have a noticeable effect on cpu time measurements; therefore,
all data reported in this play, was collected in an (artificial, in some sense)
environment in which sufficient cpu and memory resources were guaranteed
throughout each complete test run.

The[incr tsdb()] package includes a number of test suites and development
corpora for English, German, and French (and has facilitiesfor user-level import
of additional test data). For benchmarking purposes with the LinGO grammar
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four test sets were chosen: (i) the Englishtsnlp test suite (Oepen, Netter, &
Klein, 1997), (ii) the CSLI test suite derived from the original Hewlett-Packard
data (Flickinger, Nerbonne, Sag, & Wasow, 1987), (iii) a small collection of
transcribed scheduling dialogue utterances collected in the Verbmobil context
(Wahlster, 2000), and (iv) a larger extract from later Verbmobilcorpora that was
selected pseudo-randomly to achieve a balanced distribution of one hundred
samples for each input length below twenty words. Some salient properties of
these test sets are summarized in Table 1.2.7 Looking at the degrees of lexical
(i.e. the ratio between columns five and four), global (column seven), and local
(approximated in column eight by the number of passive edgescreated in pure
bottom-up parsing) ambiguity, the three test sets range from very short and
unambiguous to mildly long and highly ambiguous. The ‘blend’ test set is
a good indicator of maximal input complexity that the available parsers can
currently process (in plausible amounts of time and memory). Contrasting
columns six and three (i.e. items accepted by the grammar vs.total numbers
of well- or ill-formed items) provides a measure of grammatical coverage and
overgeneration, respectively.

2. Strong Empiricism: A Few Examples

A fundamental measure in comparing two different versions or configurations
of one system as well as for contrasting two distinct systemsis correctness and
equivalence of results. No matter what unification algorithm or parsing strategy
is chosen, parameters like the numbers of lexical items retrieved per input
word, total analyses found, passive edges derived (in non-predictive bottom-
up parsing, at least) and others should only vary when the grammar itself is
changed. Therefore, regular regression testing is required. In debugging and
experimentation practice, we have found that minor divergences in results are
often hard to identify; using an experimental parsing strategy, for example,
over- and undergeneration can even out for the number of readings and even
the accounting of passive edges. Hence, assuring an exact match in results (for
a given test set) is a non-trivial task.

The [incr tsdb()] package eases comparison of results on a per-item basis,
using an approach similar to Un∗x diff(1), but generalized for structured
data sets. By selection of a set of parameters for intersection (and optionally
a comparison predicate), the user interface allows one to browse the subset of
items that fail to match in the selected properties. One dimension that we found
especially useful in intersecting profiles is on the derivation trees (a bracketed
structure labeled with rule names and identifiers of lexicalitems) associated
with each parser analysis. Once a set of missing or extra derivations (represent-
ing under- or overgeneration, respectively) between two profiles is identified,
they can be fed back into the defective parser as a request to try and reconstruct
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each derivation. Reconstruction of derivation trees, in a sense, amounts to fully
deterministic parsing, and enables the processor to recordwhere the failure
occurs that caused undergeneration in the first place; conversely, when dealing
with overgeneration, reconstruction in the correct parsercan be requested to
identify the missing constraint(s). While these techniques illustrate basic de-
bugging facilities that the profiling and experimentation environment provides,
the following two scenes discuss algorithmic issues in parser design and tuning
that can only be addressed empirically.

2.1 Hyper-Active Parsing

The two oldest development platforms within the consortium– viz. thelkb

(CSLI Stanford) andpage (DFKI Saarbr̈ucken) systems – have undergone
homogenization of approaches and even individual modules (the conjunctive
page unifier, for instance, was developed by Rob Malouf at CSLI Stanford)
for quite a while.8 Until recently, however, the parsing regimes deployed in the
two systems were significantly different. Both parsers use quasi-destructive
unification, are purely bottom-up, chart-based, perform noambiguity packing,
and can be operated in exhaustive (all paths) or agenda-driven best-first search
modes; before any unification is attempted, both parsers apply the same set of
pre-unification filters, viz. a test against a rule compatibility table (Kiefer et
al., 1999), and the ‘quick check’ partial unification test (Malouf, Carroll, &
Copestake, 2000). Thelkb passive chart parser (in exhaustive mode) uses a
breadth-first CKY-like algorithm; it processes the input stringstrictly from left to
right, constructing all admissible complete constituentswhose right vertex is at
the current input position before moving on to the next lexical item. Attempts at
rule application are made from right to left. All and only complete constituents
found (passive edges) are entered in the chart. The activepage parser, on the
other hand, uses a variant of the algorithm described by Erbach (1991b). It
operates bidirectionally, both in processing the input string and instantiating
rules; crucially, thekeydaughter (see Scene 2.2 below) of each rule is analyzed
first, before the other daughter(s) are instantiated.

But while thelkband thepagedevelopers both assumed the strategy chosen
in their own system was the best-suited for parsing with large feature structures
(as exemplified by the LinGO grammar), the choices are motivated by conflict-
ing desiderata. Not storing active edges (as in the passivelkb parser) reduces
the amount of feature structure copying but requires frequent recomputation of
partially instantiated rules, in that the unification of a daughter constituent with
the rightmost argument position of a rule is performed as many times as the rule
is applied to left-adjacent sequences of candidate chart edges. Creating active
edges that add partial results to the chart, on the other hand, requires that more
feature structure copies are made, which in turn avoids the necessity of redoing
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Table 1.3. Contrasting parser performance: passive, active, and hyper-active in thelkb.

Set Parser
filter etasks stasks unifs copies tcpu space
% φ φ φ φ φ (s) φ (kb)

passive 94·2 658 555 663 114 0·38 2329
‘csli’ active 95·8 283 180 288 180 0·31 2432

hyper-active 95·8 283 180 354 114 0·28 1686

passive 94·2 1843 1604 1845 293 1·14 5692
‘aged’ active 96·1 716 452 718 452 0·93 5449

hyper-active 96·1 716 452 928 293 0·71 3830

passive 93·6 9209 7968 9214 1074 5·87 16757
‘blend’ active 96·0 2849 1580 2853 1580 3·42 13767

hyper-active 96·0 2849 1580 4156 1074 3·31 10393

(generated by [incr tsdb()] at 3-nov-1999 (19:08 h)

unifications. Given the effectiveness of the pre-unification filters it is likely
that for some active edges no attempts to extend them with adjacent inactive
edges will ever be executed, so that the copy associated withthe active edge was
wasted effort. Profiling the two parsers individually showed that overall perfor-
mance is roughly equivalent (with a minimal lead for the passive lkb parser in
both time and space). While the passive parser executes far more parser tasks
(i.e. unifications), it creates significantly fewer copies –as should be expected
from what is known about the differences in parsing strategy. Hence, from a
superficial comparison of parser throughput one could conclude that the passive
parser successfully trades unifications for copies, and that both basic parsing
regimes perform equally well with respect to the LinGO grammar.

To obtain fully comparable results, the algorithm used inpage was imported
into thelkb, which serves as the (single) experimentation environmentfor the
remainder of this scene. The direct comparison is shown in Table 1.3 for three
of the standard test sets. The re-implementation of the active parser in thelkb,
in fact, performs slightly better than the passive version and does not allocate
very much more space. On the ‘aged’ test set, the active parser even achieves a
modest reduction in memory consumption which most likely reflects the larger
proportion of extra unifications compared to the savings in copies (columns
five and six) for this test set. Having profiled the two traditional parsing strate-
gies and dissected each empirically, it now seems natural tosynthesize a new
algorithm that combines the advantages of both strategies (i.e. reduced unifica-
tion and reduced copying). The following algorithm, termed ‘hyper-active’ by
Oepen & Carroll (2000), achieves this goal:
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use the bottom-up, bidirectional, key-driven control strategy of the active
parser;

when an ‘active’ edge is derived, store this partial analysis in the chart
but donot copy the associated feature structure;9

when an ‘active’ edge is extended (combined with a passive edge), re-
compute the intermediate feature structure from the original rule and
already-instantiated daughter(s);

only copy feature structures for complete passive edges; partial analyses
are represented in the chart but the unification(s) that derived each partial
analysis are redone on-demand.

Essentially, storing ‘active’ (or, in a sense, hyper-active) edges without creating
expensive feature structure copies enables the parser to perform a key-driven
search effectively, and at the same time avoids over-copying for partial analyses;
additional unifications are traded for the copies that were avoided only where
hyper-active edges are actually extended in later processing.10

Table 1.3 confirms that hyper-active parsing combines the desirable proper-
ties of both basic algorithms: the number of copies made is exactly the same
as for the passive parser, while the number of unifications isonly moderately
higher than for the active parser (due to on-demand recomputation of interme-
diate structures). Accordingly, average parse times are reduced by twenty six
(‘csli’) and thirty seven (‘aged’) per cent, while memory consumption drops by
twenty seven and thirty two per cent, respectively. Applying the three parsers to
the much more challenging ‘blend’ test set reveals that the greater search space
poses a severe problem for the passive parser, and limits therelative advantages
of the hyper-active over the plain active strategy somewhat: while in the latter
comparison the amount of copying is reduced by one third in hyper-active pars-
ing, the number of unifications increases by thirty per cent at the same time (but
see the discussion of rule instantiation below). Still, thehyper-active algorithm
greatly reduces memory consumption, which by virtue of lower garbage collec-
tion times (not included intcpuvalues) results in a significant overall speed-up.
Compared to the originallkb passive parser, hyper-active parsing achieves a
time and space reduction of forty three and thirty eight per cent, respectively.
Thorough profiling and eclectic engineering have resulted in an improved pars-
ing algorithm that is now used standardly in both thelkb andpage; for the
German and Japanese Verbmobil grammars inpage, the observed benefits of
hyper-active parsing were broadly confirmed.
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Figure 1.1. Effects of head- vs. key-driven rule instantiation on parser work load (‘blend’).
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2.2 Rule Instantiation Strategies

Head-driven approaches to parsing have been explored successfully with lexi-
calized grammars likehpsg (see van Noord, 1997, for an overview) because,
basically, they can avoid proliferation of partial rule instantiations (i.e. active
edges in a chart parser) with rules that contain very unspecific argument po-
sitions. Many authors either implicitly (Kay, 1989) or explicitly (Bouma &
van Noord, 1993) assume thelinguistic headto be the argument position that
the parser should instantiate first. However, the right choice of argument posi-
tion in each rule, such that it best constrains rule applicability (with respect to all
categories derived by the grammar) cannot be determined analytically. Though
the selection is likely to be related to the amount and specificity of information
encoded for each argument, for some rules a single feature value (e.g. the[WH +]
constraint on the non-head daughter in one of the instantiations of the filler –
head schema used in LinGO) can be the most important. For terminological
clarity, page has coined the termkeydaughter to refer to the argument posi-
tion in each rule that is the best discriminator with respectto other categories
that the grammar derives; at the same time, the notion ofkey-drivenparsing
emphasizes the observation that for individual rules in a particular grammar a
non-(linguistic)head daughter may be a better candidate.

Figure 1.1 compares parser performance (using thepet parser; see below)
for a rule instantiation strategy that always fills the (linguistic) head daughter
first (labelled ‘head-driven’) with a variant that uses an idiosyncratically chosen
key daughter for each rule (termed ‘key-driven’; see below for key selection).
The data shows that the number of executed (etasks) as well as the number of
successful (stasks) parser actions increase far more drastically with respectto
input length in the head-driven setup (on the ‘blend’ test suite, truncated above
20 words due to sparse data). Since parser tasks are directlycorrelated to overall
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Table 1.4. Head and key positions and distribution of active vs. passive edges for selected rules.

Rule Name head key
aedges

pedges ratioleft→ right right→ left

head– complement left left 84,396 1,404,652 264,137 3·13
specifier–head right right 582,736 108,450 14,849 0·14
subject –head right left 48,464 364,846 300,561 6·20
head–marker left left 1,494 1,404,652 106,349 71·18

head–adjunct (scopal) left right 856,419 12,946 73,975 5·71
adjunct–head (isective) right left 34,482 1,260,660 37,343 1·08
adjunct–head (scopal) right left 11,177 1,260,660 119,513 10·69
filler –head (wh, subj) right left 162 147,636 546 3·37

parser performance, the key-driven strategy on average reduces parsing time by
more than a factor of two. Clearly, for the LinGO grammar at least, linguistic
headedness is not a good indicator for rule instantiation. Thus, the choice of
good parsing keys for a particular grammar is an entirely empirical issue. Key
daughters, in the current setup, are stipulated by the grammar engineer(s) as
annotations to grammar rules; in choosing the key positions, the grammarian
builds on knowledge about the grammar and observations fromparsing test data.
The[incr tsdb()] performance profiling tools can help in this choice since they
allow the accountingof active and passive edges tobe brokendownby individual
grammar rules (as they were instantiated in building edges). Inspecting the
ratio of edges built per rule, for any given choice of parsingkeys, can then
help to identify rules that generate an unnecessary number of active edges.
Thus, in the experimental approach to grammar and system optimization the
effects of different key selections can be analyzed precisely and compared to
earlier results.11 Table 1.4 shows the head and key positions together with the
differences in the number of active edges derived (in strictleft to right vs. right
to left rule instantiation modes) for a subset of binary grammar rules in LinGO.
For the majority of head – argument structures (with the notable exception of
the subject – head rule) the linguistic head corresponds to the key daughter, in
adjunction and (most) filler – head constructions we see the reverse; for some
rules, choosing the head daughter as the key can result in an increase of active
edges close to two orders of magnitude.

Inspecting edge proliferation by individual rules revealsanother property
of the particular grammar: the ratio of passive to active edges (column seven
in Table 1.4, using the key-driven values foraedges) varies drastically. The
specifier – head rule, for example, licenses a large number ofactive edges but,
on average, only one out of seven active edges can be completed to yield a
passive edge. The head – marker rule, on the other hand, on average generates
seventy one passive edges from just one active edge. While the former should
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certainly benefit from hyper-active parsing, this seems very unlikely for the
latter; Scene 2.1 above suggests that no more than three unifications should
be traded for one copy in thelkb. Therefore, it seems plausible to apply the
hyper-active parsing regime selectively to rules with apedgesto aedgesratio
below a certain thresholdt.

3. PET – Synthesizing Current Best Practice

pet is a platform tobuild processing systems basedon the descriptive formalism
represented by the LinGO grammar. It aims to make experimentation with
constraint-based parsers easy, including comparison of existing techniques and
evaluating new approaches. Thus, flexibility and extendibility are primary
design objectives. Both desiderata are achieved by a tool box approach –pet
provides an extendible set of configurable building blocks that can be combined
and configured in different ways to instantiate a concrete processing system.
The set of building blocks includes objects likechart, agenda, grammar, type
hierarchy, and typed feature structure. Using the available objects, a simple
bottom-up chart parser, for instance, can be realized in a few lines of code.

Alternative implementations of a certain object may be available to allow
comparison of different approaches to one aspect of processing in a common
context. For example, the currentpet environment provides a choice of de-
structive, semi-destructive, and quasi-destructive implementations of thetyped
feature structureobject (viz. the algorithms proposed by Wroblewski (1987),
Ciortuz (2001), Tomabechi (1991), and Malouf et al. (2000)). In this setup
properties of various graph unification algorithms and feature structure repre-
sentations can be compared among each other and in interaction with different
processing regimes.

In a parser calledcheap, pet implements all relevant techniques from Kiefer
et al. (1999) (i.e. conjunctive-only unification, rule filters, quick-check, restric-
tors), as well as techniques originally developed in other systems (e.g. key-
driven parsing frompage, caching type unification and hyper-active parsing
from thelkb, and partial expansion from DFKIchic). Re-implementation and
strict modularization often resulted in improved representations and algorithmic
refinement; since individual modules can be specialized fora particular task,
the overhead often found in monolithic implementations (like slots in internal
data structures, say, that are only required in a certain configuration) could be
reduced.

Efficient memory management and minimizing memory consumption was
another important consideration in the development ofpet. Experience with
Lisp-based systems suggests that memory throughput is one of the main bot-
tlenecks when processing large grammars. In fact, one observes a close cor-
relation between the amount of dynamically allocated memory and processing
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time, indicating much time is spent moving data, rather thanin actual computa-
tion. Using builtin C++ memory management, allocation and release of feature
structure nodes can account for up to forty per cent of total run time. Like
in the WAM (Aı̈t-Kaci, 1991), a general memory allocation scheme allowing
arbitrary order of allocation and release of structures is not necessary in this
context. Within a larger unit of computation, the application of a rule, say, the
parser typically builds up structure monotonically; memory is only released in
the case of a top-level unification failure when all partial structure built during
this unification is freed. Therefore,pet employs a simple stack-based memory
management strategy, acquiring memory from the operating system in large
chunks which are then sub-allocated. Amark – releasemechanism allows sav-
ing the current allocation state (the current stack position) and returning to that
saved state at a later point. Thus, releasing a chunk of objects amounts to a
single pointer assignment.

Also, feature structure representations are maximally compact.12 In com-
bination with other memory-reducing techniques (e.g. partial expansion and
shrinking, substructure sharing, hyper-active parsing) this results in very at-
tractive memory consumption characteristics for thecheap parser, allowing
it to process the ‘blend’ test set with a process size of around one hundred
megabytes (where Lisp- or Prolog-based implementations easily grow beyond
half a gigabyte). To maximize compactness and efficiency,pet is implemented
in ANSI C++, but uses traditional C representations (ratherthan C++ objects)
for some central objects where minimal overhead is required(e.g. the basic
feature structure elements).

4. Quantifying Progress

The preceding acts have exemplified the benefits of competence and perfor-
mance profiling applied to isolated properties of various parsing algorithms.
In this penultimate act we take a slightly wider perspectiveand use the profil-
ing approach to give an impression of overall progress made in processing the
LinGO grammar over a development period of three years. The oldest available
profiles (for the ‘tsnlp’ and ‘aged’ test sets) were obtained withpage (version
2·0 released in May 1997) and the October 1996 version of the grammar; the
current best parsing performance, to our best knowledge, isachieved in the
cheap parser ofpet. All data was sampled on the same Sun UltraSparc server
(dual 300 megahertz; 1.2 gigabytes memory; mildly patched Solaris 2.6) at
Saarbr̈ucken.

The evolution of grammatical coverage is depicted in Table 1.5, contrasting
salient properties from the individual competence profiles(see Table 1.2) side
by side; to illustrate the use of annotations on the test data, the table is further
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Table 1.5. Development of LinGO grammatical coverage and overgeneration over three years.

test October 1996 August 1999
Test Set items lexical parser in out lexical parser in out

♯ φ φ % % φ φ % %

‘ tsnlp’ test set 4463 2·32 1·75 65·3 26·7 2·67 2·21 76·7 26·5

S Types 174 2·70 2·16 78·7 40·0 3·37 1·24 96·0 51·6
C Agreement 123 2·59 1·33 58·8 10·0 2·27 1·28 77·9 10·0
C Complementation 1010 2·45 2·19 62·2 12·1 2·99 1·67 83·1 10·5
C Diathesis-Passive 220 3·58 2·87 25·3 8·1 3·52 3·52 50·5 6·3
NP Agreement 1196 1·56 1·06 47·8 14·8 1·70 1·21 62·2 15·9
Other 1740 2·28 1·72 73·2 54·9 2·70 2·66 79·9 53·3

‘aged’ test set 95 2·11 2·55 65·8 — 2·74 7·00 75·0 —

(generated by [incr tsdb()] at 5-nov-1999 (17:11 h))

broken down by selected syntactic phenomena for thetsnlp data (Oepen et al.,
1997, give details of the phenomenon classification). Comparison of thelexical
andparseraverages shows a modest increase in lexical but a dramatic increase
in global ambiguity (by close to a factor of three for ‘aged’). Columns labeled
in andout indicate coverage of items marked wellformed and overgeneration
for ill-formed items, respectively. While the ‘aged’ test set does not include
negative test items, it confirms that coverage within the Verbmobil domain has
improved. However, thetsnlp test suite is far better suited to gauge develop-
ment of grammatical coverage, since it was designed to systematically exercise
different modules of the grammar. In fact, a net increase in coverage (from
sixty five to seventy seven per cent) in conjunction with slightly reduced over-
generation confirms that the LinGO grammar engineers have steadily improved
the overall quality of the linguistic resource.

The assessment of parser performance shows a more dramatic development.
Average parsing times per test item (on identical hardware)have dropped by
more than two orders of magnitude (a factor of two hundred andseventy on the
‘aged’ data), while memory consumption was reduced to about two per cent
of the original values. Because in the earlypage data the ‘quick-check’ pre-
unification filter was not available, current filter rates forpet (and the other
systems alike) are much better and result in a reduction of parser tasks that
are actually executed. At the same time, comparing the number of passive
edges licensed by the two versions of the grammar provides a good estimate
on the size of the search space processed by the two parsers. Although for the
(nearly) ambiguity-freetsnlp test suite thepedgesaverages are almost stable,
the ‘aged’ data shows an increase by a factor of three. Asserting that the average
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Table 1.6. Development of salient performance parameters (page vs.pet) over three years.

Version Platform Test Set
filter etasks pedges tcpu space
% φ φ φ (s) φ (kb)

October 1996 page
‘tsnlp’ 49·9 656 44 3·69 19016
‘aged’ 51·3 1763 97 36·69 79093

‘tsnlp’ 93·9 170 55 0·03 333
August 1999 pet ‘aged’ 95·1 753 292 0·14 1435

‘blend’ 95·5 3084 1140 0·65 10589

(generated by [incr tsdb()] at 5-nov-1999 (21:23 h)

number of passive edges is a direct measure of input complexity (with respect
to a particular grammar), we extrapolate the overall speed-up in processing
the LinGO grammar as a factor of roughly eight hundred (again, tcpuvalues in
Table 1.6 donot include garbage collection forpage which in turn is avoided in
pet; hence, the net speed-up is more than three orders of magnitude). Finally,
Table 1.6 includespet results on the currently most challenging ‘blend’ test
set (see above). Despite of greatly increased search space and ambiguity, the
cheap parser achieves an average parse time of 650milliseconds and processes
almost ninety per cent of the test items in less than one second.13

5. Multi-Dimensional Performance Profiling

The preceding acts have demonstrated how the[incr tsdb()] profiling approach
enables comparison over time and across platforms, using the same grammar
and reference input in both cases. In this final application of the framework, we
draw the curtain wide open and attempt a contrastive study along several dimen-
sions simultaneously. The basic theme of the exercise is thesearch for a reliable
point of comparison across two distinct (though, of course,abstractly similar)
systems, using different grammars (of different languages) and unrelated test
data.

Table 1.7 summarizes a number of performance metrics for four different
configurations that result from the cross product of applying two distinct pro-
cessing environments (viz. thelkb andpet) to two distinct grammars (the
LinGO grammar and the Japanesehpsg developed within Verbmobil; see
Siegel, 2000). While of course within each row the results for both platforms
were profiled against the same data set (viz. a sample of one thousand sen-
tences randomly extracted from English and Japanese Verbmobil corpora, re-
spectively), the exact details of the two test corpora will not matter for the present
exercise; besides asserting a general, if rough similarityin origin and average
length, nothing in the following paragraphs will hinge on inherent properties
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Table 1.7. The matrix: simultaneous cross-grammar, cross-platform comparison.

LKB PET Speed-Up

aedges 854 aedges 854
pedges 1850 pedges 1850
etasks 5946 etasks 6541

English stasks 2695 stasks 2661 ∼ 5.34

tcpu 2.96 s tcpu 0.56 s
space 16894 kb space 3436 kb

aedges 153 aedges 153
pedges 725 pedges 725
etasks 950 etasks 893

Japanese stasks 851 stasks 851 ∼ 8.40

tcpu 0.56 s tcpu 0.07 s
space 4053 kb space 604 kb

Speed-Up ∼ 5.29 ∼ 8.10

of the test data. As both systems implement the same common typed feature
structure formalism (see Section 1 above) and obey the[incr tsdb()] applica-
tion program interface, the matrix is complete and for each corresponding pair
it has been confirmed that the results across systems yield anexact match (the
minor diversions in task accounting are due to slightly different sets of ‘quick
check’ paths and to a technical difference in how inflectional rules are applied
bypet). Therefore, the complete symmetric matrix allows contrastive analyses
both across grammars (vertically comparing within a column) and across plat-
forms (horizontally comparing within a row). Before looking at the diagonals
of the matrix – comparing across grammars and platforms simultaneously – we
will use the available data to observe a number of relevant differences in the
two grammars and parsing systems, respectively.

Comparing the two grammars, it seems to be the case that the Japanese
grammar presents a smaller challenge to the processing system than is posed
by the English grammar: while the absolute differences in the total numbers of
passive edges (as a measure of global ambiguity, say) and overall parse times
could in principle be a property of different test corpora (i.e. suggest that the
Japanese sample on average was significantly less ambiguousand therefore
easier to analyze than the English data), putting the two metrics into proportion
reveals a genuine difference between the two grammars. Assuming that the
average cost to build a single passive edge is relatively independent of the
input data, the ratio of passive edges built per second is 625(English) to 1295
(Japanese) for thelkb and 3304 to 10357, respectively, forpet. Further
looking at the average size of a passive edge – i.e. relating the average amount
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of dynamically allocated memory during parsing (space) to the total number of
passive edges built – suggests an explanation for the highercost per edge in the
English grammar: the ratio ofspaceper passive edge is 9·3 kb (English) to 5·6
kb (Japanese) for thelkb (i.e. a ratio of 1·66) and 1·9 kb to 0·8 kb, respectively,
for pet (i.e. a ratio of 2·38). Ignoring the somewhat surprising mismatch in
exactly how much less memory is allocated per edge for the Japanese grammar
in the two platforms for a moment, parsing with the Japanese grammar clearly
seems to take both less time and memory.14 The difference in average allocation
per passive edge (the ratios of9·3

5·6
= 1·66 for thelkb constrasted with1·9

0·8

= 2·38 for pet, on the other hand, points to another differences between the
grammars that, in turn, makes an asymmetry between the two platforms surface.
Unlike thelkb, thepet grammar preprocessor deploys a technique known
asunfilling (Götz, 1993; Gerdemann, 1995; Callmeier, 2000) – essentiallya
recursive elimination of information in feature structures that is implicit in the
type of the structure – to reduce feature structure size at run-time. While the
English LinGO grammar has been hand-tuned to achieve an effect similar to
unfilling through an increased use of types (Flickinger, 2000), such a manual
optimization has not been applied to the Japanese grammar. Accordingly,pet
obtains a bigger bonus from the unfilling operation for structures of the Japanese
grammar than it does for English (while thelkb in both cases uses the complete
structures). The unfilling advantage on the Japanese grammar also explains the
observed difference in the ratios of average cost per passive edge (measured as
pedgesper second:1295

625
= 2·07 for thelkb vs. 10357

3304
= 3·13 forpet); again,

the comparatively better performance ofpet on the Japanese grammar almost
exactly equals the relative ratio in edge size (2·07

3·13
= 0·66 vs. 1·66

2·38
= 0·69).

We can therefore conclude that the overall vertical speed-up across the two
grammars (5·29 for thelkb and 8·10 forpet) accumulates three factors, viz.
(i) reduced processing complexity (partly due to smaller feature structures) for
the Japanese grammar, (ii) reduced test corpus complexity (to account for the
additional speed-up over the factor-of-two decrease in cost per edge observed in
thelkb), and (iii) increased unfilling efficiency (explaining whypet performs
relatively better on the Japanese than on the English grammar).

Finally, what if we pretended that the comparison matrix wasonly partially
available, say providing one profile of thelkb applied to the English gram-
mar and another sample ofpet processing the Japanese grammar? At first,
it seems, nothing much can be concluded from the observationthatpet takes
0·07 seconds to solve one problem while thelkb requires 2·96 seconds to
solve a different problem. Without knowledge about the complexity of the
actual problem, relating raw processing times must be completely uninforma-
tive. To arrive at a comparative assessment of relative performance for the two
systems, instead, would require a derived measure of generalized (or inherent)
complexity, a metric that with sufficient confidence can be expected to provide
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a stable predictor of processing cost independent of the grammar and type of
test data. From some of the observations reviewed in the previous paragraphs,
it follows that the rate of passive (or active) edges per (cpu) second will not be a
good measure because the proportion of successful vs. failing unifications may
vary drastically across grammars (and indeed does for the data in Table 1.7),
where only succeeding unifications will be reflected as an edge in the chart.
By the same token, looking atstasksper second would suffer from the same
potential for skewing.

But what about the ratio of executed parser actions (etasks) per second of
total parsing time? Applying this metric to the problem at hand, we obtain
12757

2009
= 6·35 and11680

1520
= 7·68 for the lower right to upper left and upper right

to lower left diagonals of Table 1.7, respectively. If executed tasks per sec-
ond was a suitably independent metric, the diagonal comparison would thus
predict thatpet is between a factor of 6·35 and 7·68 more efficient that the
lkb. Looking at the actual values – speed-ups of 5·34 and 8·40 on the English
and Japanese grammars, respectively – the prediction is reasonably accurate; it
would indeed seem that the average cost of executing a singleparser task is a
relatively stable indicator of overall system efficiency, at least for two platforms
that despite all technical differences share a large numberof basic assumptions
and design. At this point, however, we can only speculate about why etasks
per seconds appears to be a surprisingly good metric of (abstract) efficiency
for the two systems considered. Firstly, total parsing times are dominated by
feature structure manipulation, that is calls to the unification and copy routines;
executing a parser task is the fundamental operation that (in most cases) re-
quires exactly one unification and, for some subset of tasks,also a subsequent
copy. Independent of the unification to copy cost and the unification failure to
success ratios, all constraint solver activity somehow originates in a task ex-
ecution. Secondly – even with moderate-size and mildly ambiguous test data
– the number of executed tasks will be very large and therefore the ratio of
etasksper cpu second has been found to be quite stable across varying test data
or grammars. Thirdly, where two (closely related) systems incorporate similar
approaches to parsing and reducing search, the number of parser tasks that come
to be executed will correlate in some informal sense to the size of the search
space (or problem complexity) that has been explored; therefore relating it to
the time that a system takes to solve that problem yields a measure of efficiency.
Obviously, these conclusions are necessarily preliminaryand – given remaining
noise in the cost per parser task across platforms and grammars – the metric
proposed can only approximate relative efficiency; indeed,looking at another
broad-coveragehpsg – viz. the German Verbmobil grammar – we found the
general prediction confirmed but the variance of diagonal comparison slightly
larger than with the English – Japanese pairing.
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6. Conclusion – Recent Developments

Precise, in-depth comparison has enabled a large, multi-national group of devel-
opers to quantify and exchange algorithmic knowledge and benefit from each
others experience. The[incr tsdb()] profiling package has been integrated with
some six processing environments for (hpsg-type) unification grammars and
has thus facilitated a previously unmatched degree of cross-fertilization. Many
of the parameters of variation in system design and optimization – including the
choice of parsing strategy, feature structure encoding, and unification scheme –
require detailed knowledge about the relative contributions of sub-tasks (feature
structure unification vs. copying, for example) to the overall problem size as
well as a fine-grained, accurate understanding of which aspects of the problem
(as defined by the grammar and input data) are especially hardon the proces-
sor. Our integrated competence and performance profiling approach aims to
make appropriate data and suitable analysis techniques available to grammar
and system engineers.

The modularpet platform provides an experimentation tool box that allows
developers to combine various encoding and processing techniques and rapidly
assess both their strong and weak points. The attractive practical performance
of the cheap parser has made it the preferred run-time system for test set
processing in the development of several large-scalehpsg grammars.pet has
also been successfully deployed in commercial products.

As this play was first brought to stage early in 2000, obviously there have
been a number of recent developments not reflected here. Beyond what was
shown in Acts 3 through 5, the range of experimental choices in pet has been
increased significantly, particularly in the areas of fixed-arity feature structure
encodings (in the tradition of Prolog compilation) and ambiguity packing (from
thelkb). Callmeier (2002) presents an empirical study comparing the benefits
of various feature structure encoding techniques. A teichoscopic view of col-
laborative activities among the groups is compiled by Oepen, Flickinger, Tsujii,
& Uszkoreit (2002).

Acknowledgments

This play builds heavily on results obtained through collaboration between a
largish group of people at several sites. The peripeteia achieved in this period
of close collaboration between sites over several years would not have been
possible without the main characters, researchers, engineers, grammarians, and
managers at Saarbrücken, Stanford, Tokyo, and Sussex University. To name
a few, John Carroll, Liviu Ciortuz, Ann Copestake, Dan Flickinger, Bernd
Kiefer, Hans-Ulrich Krieger, Takaki Makino, Rob Malouf, Yusuke Miyao, Ste-
fan Müller, Mark-Jan Nederhof, G̈unter Neumann, Takashi Ninomiya, Kenji
Nishida, Ivan Sag, Kentaro Torisawa, Jun-ichi Tsujii, and Hans Uszkoreit have



20

all greatly contributed to the development of efficienthpsg processors as de-
scribed above. Many of the individual achievements and results are reflected
in the bibliographic references given throughout the play.

Notes

1. See ‘http://www.dfki.de/lt/’ and ‘http://www.coli.uni-sb.de/’ for information on the
DFKI Language Technology Laboratory and the ComputationalLinguistics Department at Saarland Univer-
sity, respectively.

2. The ‘http://lingo.stanford.edu/’ web pages listhpsg-related projects and people involved
at CSLI, and also provide an on-line demonstration of thelkb system and LinGO grammar.

3. Information on the Tokyo Laboratory, founded and managedby Professor Jun-ichi Tsujii, can be
found at ‘http://www.is.s.u-tokyo.ac.uk/’.

4. In thehpsg universe (and accordingly our present play) the term ‘grammar’ is typically used
holistically, referring to the linguistic system comprised of (at least) the type hierarchy, lexicon, and rule
apparatus.

5. (Meta-)Systems likepleuk (Calder, 1993) andHdrug (van Noord & Bouma, 1997) that facilitate
the exploration of multiple descriptive formalisms and processing strategies come with slightly more sophis-
ticated benchmarking facilities and visualization tools.However, they still largely operate on monolithic,
unannotated input data sets, restrict accounting of systemresults to a small number of parameters (e.g. num-
ber of analyses, overall processing time, memory consumption, possibly the total number of chart edges),
and only offer a limited, predefined choice of analysis views.

6. See ‘http://www.coli.uni-sb.de/itsdb/’ for the (draft) [incr tsdb()] user manual, pronunci-
ation rules, and instructions on obtaining and installing the package.

7. While wellformedness and item length are properties of the test data proper, the indicators for average
ambiguity and feature structure (fs) size were obtained using the release version of the LinGO grammar,
frozen in August 1999. Here and in the tables to come the symbol ‘ ♯’ indicates absolute numbers, while ‘φ’
denotes average values. Coverage on the ‘blend’ corpus is comparatively low, as it includes Verbmobil data
(specifically vocabulary) that became available only afterthe grammar had been frozen for our experiments.

8. Still, the two systems are by no means merely two instantiations of the same concept, and continue
to focus on different application contexts. While thelkb is primarily used for grammar development,
education, and generation (in an AAC basic research project), page develoment since 1997 has emphasized
robust parsing methods with speech recognizer output (in application to Verbmobil).

9. Although the intermediate feature structure is not copied, it is used to compute the ‘quick-check’
vector for the next argument position to be filled; as was seenalready, this information is sufficient to filter
the majority (i.e. up to ninety five per cent) of subsequent operations on the ‘active’ edge.

10. There is an additional element – termed ‘excursion’ – to the algorithm proposed in Oepen & Carroll
(2000) that aims to take advantage of the feature structure associated with an active edge while it is still
valid (i.e. within the same unification generation). Put simply, the hyper-active parser is allowed to deviate
slightly from the control strategy governed by the agenda, to try and combine the active edge with one
suitable passive edge immediately.

11. For a given test corpus, the optimal set of key daughters can be determined (semi- or fully automati-
cally) by comparing results for unidirectional left to right to pure right to left rule instantiation; the optimal
key position for each rule is the one that generates the smallest number of active items.

12. The size of one dag node in thepet implementation of Tomabechi (1991) is only twenty four bytes,
compared to, for example, fifty six in the Lisp-basedlkb system.

13. To obtain the results on the ‘blend’ test set shown in Table 1.6, an upper limit on the number of
passive edges was imposed in thecheap parser; with a permissible maximum of twenty thousand edges,
around fifty (in a sense pathological) items from the ‘blend’ set cannot be processed within the limit and,
accordingly, are excluded in the overall assessment. Maximal parsing times for the remaining test items
range to around fourteen seconds for input strings that approximate twenty thousand edges and derive a very
large number of readings.
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14. The calculation of average allocation cost per passive edge is, of course, only approximative in
that other computation – primarily dag and arc allocations during failed unification attempts and the edge
structures themselves – also contributes to overall memoryconsumption. However, both platforms utilize a
hyper-active chart parser, so that active edges do not have afeature structure associated with them; likewise,
a high filter efficiency reduces the number of failed unifications, such that (the feature structures associated
with) passive edges certainly account for the bulk of dynamic allocation.
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