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The Deep Linguistic Processing with HPSG Initiative (DELPH-IN) is
an informal network of practically minded, old-school computational
linguists.1 The name DELPH-IN was coined over dinner at the former
Uszkoreit residence at Rothenbühlerweg in Saarbrücken only ten or
so years ago, but to me DELPH-IN reflects no less than a common
theme throughout three decades of professional work by Hans—the
long-range pursuit of genuine language understanding. Among other
elements, DELPH-IN combines formal linguistic analysis, constraint-
based grammar engineering, algorithms for efficient parsing and gen-
eration, preferences between competing analyses and disambiguation,
and of course practical applications. Ever since he was a graduate stu-
dent at the University of Texas at Austin, these are research areas to
which Hans has made important contributions. The DELPH-IN network
is the fruit of a rich, bi-continental career, the product of a curious and
persistent scientist with long-term visions, and of one who also excels
at engaging others and creating productive working environments. This
chapter attempts to summarize current best practices in parsing and
disambiguation for DELPH-IN grammars, i.e. document a selection of
techniques that have evolved throghout the years and at present (late

1Please see http://www.delph-in.net/ for more factual background, including
a list of participating sites, available technology, and languages covered.
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2010) are at the core of large-scale parsing in DELPH-IN.2 There is
active current work at several sites to further advance DELPH-IN tech-
nology, hence the current summary should not be read as a conclusion
to this stream of work, but rather as an intermediate snapshot.

1.1 Background: The DELPH-IN Formalism and Tools

As unification-based (or constrained-based) approaches to grammati-
cal description and processing became mainstream in the 1980s (if only
temporarily, some might say), a broad variety of descriptive formalisms
and mathematical interpretations of the use of (typed) feature struc-
tures were in active use—and were more or less tightly coupled to spe-
cific linguistic theories, as for example Head-Driven Phrase Structure
Grammar (HPSG; Pollard and Sag, 1994), Lexical Functional Grammar
(LFG; Dalrymple et al., 1995), or (Feature Structure) Tree Adjoining
Grammar ((F)TAG; Vijay-Shanker and Joshi, 1988). The 1996 final
report of the European Expert Advisory Group (EAGLES) on Linguis-
tic Formalisms lists about a dozen implemented grammar development
and processing environments (Uszkoreit et al., 1996). While the math-
ematical foundations for (typed) feature structures maybe were largely
established by Rounds and Kasper (1986) and Carpenter (1992), inter
alios, variation in the 1990s was primarily in the particular selection of
descriptive devices that an individual system made. Open- vs. closed-
world reasoning, single vs. multiple inheritance, various approaches to
disjunction and negation (in different flavors), set-valued feature struc-
tures, the precise semantics of the type system, and the inclusion of
implicational or relational constraints are some of the dimensions that,
applied to the systems surveyed by EAGLES, for example, make each
implementation unique—thus precluding interoperability of linguistic
resources.

One accomplishment of the DELPH-IN consortium is its convergence
on a common descriptive formalism—a conservative blend of Carpenter
(1992), Copestake (1992), and Krieger and Schäfer (1994)—that allows
grammars3 to be processed across different platforms. This joint for-
malism is by no means the mere intersection (or, loosely speaking, the
smallest region of overlap) between the traditions represented among

2The work presented here builds on almost twenty years of collaborative, in-
cremental refinement. Numerous colleagues have contributed to this development,
and it would seem impossible to properly acknowledge everyone. The selection of
references used in this chapter seeks to provide pointers to contributors throughout
the DELPH-IN history (and before) and across sites involved.

3In the HPSG literature (and accordingly the present article) the term ‘grammar’
is typically used holistically, referring to the linguistic system comprised of (at least)
the type hierarchy, lexicon, and rule apparatus.



Efficient Parsing and Disambiguation for DELPH-IN Grammars / 3

October 20, 2010

participating groups; instead, the selection of formal and descriptive
devices was guided by two major concerns: (i) linguistic adequacy,
grounded in two decades of joint experience in building large-scale
HPSG implementations, and (ii) processing requirements, informed by
earlier work on efficient implementations. The DELPH-IN decision to
eliminate (explicit) disjunction from the specification language, for ex-
ample, is motivated by theoretical and engineering considerations alike.
Flickinger (2000) argues that a grammatical stipulation that makes
disjunctive information explicit in underspecified types in the gram-
matical ontology (rather than by disjunctive enumeration) provides a
stronger model of actual (co-)variation. At the same time, moving to a
purely conjunctive feature logic enables the adaptation and fine-tuning
of existing, very efficient unification techniques that avoid expensive
backtracking and duplication of redundant structure (Tomabechi, 1991,
Malouf et al., 2000).

The joint descriptive formalism can be informally characterized as a
closed-world, conjunctive-only, multiple inheritance type system that
enforces strong typing and strict appropriateness. Types can be as-
sociated with arbitrary (complex) constraints that are inherited and
applied both at compilation and at run-time (e.g. when two types unify
to a more specific, constraint-bearing subtype). HPSG well-formedness
principles, immediate dominance schemata, and constituent order-
ing constraints are all spelled out in the type hierarchy (and cross-
multiplied), yielding a set of phrase structure schemata that can be
interpreted as rewrite rules over complex (typed feature structure) cat-
egories. A mathematical specification of this formalism as it is assumed
throughout the volume is provided by Copestake (2000). And although
our conservative choice of descriptive devices is fairly restrictive,4 it
has enabled the development of several large grammars as well as the
implementation of processing systems that perform with previously
unmatched efficiency.

With a development history dating back to the early 1990s, the
LinGO English Resource Grammar (ERG; Flickinger, 2000) arguably
is both the largest among current DELPH-IN grammars and the most
comprehensive HPSG implementation to date. The ERG has contin-
uously evolved through a string of R&D projects (and a handful of

4Some of our colleagues half-jokingly characterize the DELPH-IN formalism as
‘PATR-III’, i.e. an imaginary third revision of the formalism of Shieber et al. (1983).
Like PATR-II, the DELPH-IN formalism indeed assumes an explicit phrase structure
backbone (rewrite rules of fixed arity, where right-hand side categories are strictly
ordered); the main difference, thus, is in the nature of categories in DELPH-IN, which
transcends PATR-II noticeably in its use of strong typing and multiple inheritance.
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commercial applications) and today allows the analysis of running text
across domains and genres. The hand-built ERG lexicon of some 35,000
lemmata aims for complete coverage of function words and open-class
words with ‘non-standard’ syntactic properties (e.g. argument struc-
ture). Built-in support for light-weight named entity recognition and
an unknown word mechanism combining statistical PoS tagging and on-
the-fly lexical instantiation for ‘standard’ open-class words (e.g. non-
relational nouns and adjectives) typically enable the grammar to de-
rive a complete analysis for 85− − 90 % of all utterances in standard
corpora, for example news-wire, English Wikipedia, or bio-medical re-
search literature (Flickinger et al., 2010, Adolphs et al., 2008). Parsing
times for these data sets average around a couple of seconds per sen-
tence, i.e. time comparable to human production or comprehension.

Among the rich assortment of tools in the DELPH-IN open-source
repository, two are directly related to our discussion of parsing and
disambiguation approaches. The PET parsing system provides an
industrial-strength synthesis of best current knowledge within our
community; PET was originally developed by Callmeier (2000) and
has since been maintained and extended as an open-source project in-
volving several DELPH-IN sites.5 The so-called [incr tsdb()] environment
supports large-scale experimentation in DELPH-IN: test suites, corpora,
and treebanks are maintained in a relational database, a standardized
API generalizes over ‘client’ processors (among them PET), and a com-
bination of graphical and batch-oriented tools support, among other
tasks, regression testing of the parser, as well as training and evaluation
of probabilistic disambiguation models (Oepen, 2003). The following
sections focus on core parsing and disambiguation techniques provided
by PET and [incr tsdb()], as these take a central (if not exclusive) role
in parsing with DELPH-IN grammars. For a specific grammar (and in
principle at least also for a token domain, genre, or task), DELPH-IN

technology provides a variety of parameters and choice of strategies;
core aspects of customization and optimization are discussed (some-
what superficially) where appropriate. Unless otherwise noted, experi-
mental results are reported for the ERG, using the release of October
2010 and software revisions for PET and [incr tsdb()] as provided in the
2010 Paris snapshot.

5See http://www.delph-in.net/pet for background. Current active contributors
to the PET code base include Peter Adolphs, Bart Cramer, Bernd Kiefer, Stephan
Oepen, and Yi Zhang.
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1.2 Parsing: Circumscribing the Space of Analyses

At its core, PET is a classic, agenda-driven chart parser (Kay, 1986),
with some of its design decisions rooted in earlier work on implement-
ing efficient unification-based parsing by Erbach (1991), Uszkoreit et al.
(1994), and Kiefer et al. (1999). Agenda items are so-called tasks (rather
than edges), for example the instantiation of a lexical entry, the appli-
cation of a grammar rule to a passive edge, or the combination of one
active and one passive edge. In a strictly bottom-up process (reflecting
the lexicalized nature of HPSG), the right-hand sides of rewrite rules
(i.e. daughter positions in the edge to be built eventually) are instan-
tiated bi-directionally, where a per-rule specification of a so-called key

daughter seeks to maximally constrain the applicability of each rule.
The key daughter is instantiated first and typically is the right-hand
side element that best discriminates amongst the set of possible cat-
egories derived by the grammar, often the linguistic head or another
daughter that provides comparatively specific information.6

The categories of all edges in the chart are typed feature structures
(TFSs), and category compatibility is tested by TFS unification. Thus,
applying a grammar rule to a passive edge, for example, conceptually
means unifying the TFS of the passive edge with one element of the
right-hand side of the rule (one daughter position). In practice, both
the left- and right-hand sides of rules are represented as a single TFS

(thus trivially allowing reentrancy between ‘mother’ and ‘daughter’ cat-
egories), embedding the right-hand side sequence of categories as the
value of a designated, list-valued feature ARGS in the category of the
mother. In this scheme, daughter positions can be denoted merely by
feature paths into the combined TFS. Where unifying a passive edge
into the daughter position of a rule (or active edge) succeeds, a new
edge is created whose category will be the unification result. Depend-
ing on the arity of the underlying rule, the new edge can either be
active (with remaining, open daughter positions) or passive (i.e. com-
plete). This chapter will not discuss the details of TFS manipulation.
It is worth noting, however, that PET features a highly optimized uni-
fier, combining the quasi-destructive technique of Tomabechi (1991)

6For an earlier version of the ERG (and a comparatively trivial corpus), Oepen
and Callmeier (2000) report a doubling of parser efficiency through the identification
of optimal key daughters. For a given grammar, this is a purely empirical process
that can be aided by the [incr tsdb()] performance profiling tool, which supports
accounting of active and passive edges, broken down by individual grammar rules.
For a development corpus, the optimal choice of key daughters can be determined
by comparing results for variable rule instantiation strategies, where the optimal
key position for each rule is the one that generates the smallest number of active
edges.
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with the subgraph sharing improvements of Malouf et al. (2000) and
the compact dag encoding and stack-based memory management of
Callmeier (2002). Furthermore, a ‘rule filter’ (a three-dimensional ta-
ble compiled statically by attempting to feed each of the grammar rules
into all daughter positions of other rules) and the so-called ‘quick check’
(a pre-unification test of frequently failing feature paths) serve to effec-
tively predict unification failure for a large proportion of parser tasks
without actually invoking the full TFS unifier (Erbach, 1991; Kiefer
et al., 1999).7

An optimization at the interface of the parser proper and the unifier
is the technique of so-called hyper-active parsing. Given the large size
of feature structures and the computational cost related to memory al-
location, Oepen and Carroll (2000b) observe that it can be beneficial to
not make explicit (i.e. copy after a successful unification) the category
associated with an active edge. Some active edges are never used in sub-
sequent parser tasks, and those who do on average only participate in
a small number of attempts at instantiating another daughter position.
Comparing the relative cost of one (quasi-destructive) unify operation
to that of one TFS copy, it can be more efficient to re-do a small number
of unifications—viz. those leading to the intermediate category of an
active edge—on demand, thus eliminating the need to create an actual
copy. Experiments using an earlier version of the ERG and a similar,
though less optimized chart parser (implemented in Lisp) showed that
around one third of both parsing time and run-time memory consump-
tion can be saved by trading a few extra unifications for fewer copies.
Hyper-active parsing today is the default strategy in PET. However, for
grammars with larger numbers of right-hand side elements in rules or
more generally ‘untypical’ properties, the beneficial trade-offs observed
for the ERG (and some other DELPH-IN grammars) may not apply.8

Originally, it was most common to run the PET parser with a search
strategy that would rely on the agenda to try and enumerate an n-best
lists of results. Not more than about ten years ago, DELPH-IN gram-

7Whereas the static rule filter is computed automatically in PET, premium quick
check efficiency depends on a grammar providing a good set of feature paths to be
used. Somewhat like the determination of strong key daughters, this problem is
best approached in an empirical manner: for a development corpus, accounting of
unification failures per path can be provided by PET. Ordering candidate feature
paths by frequency of failure, then, the optimal number of paths to be included in
the quick check (i.e. the best balance of pre-filtering effort to resulting savings) can
be determined in an automated series of experimentation.

8While the formalism is agnostic about the maximum arity of rules, a majority of
DELPH-IN grammars limit themselves to at most binary rewrite rules for linguistic
reasons. This most likely adds to the efficacy of hyper-active parsing.
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mars included a heuristic scoring mechanism—based on introspection
and manual stipulation by the grammarian—for parser tasks (albeit as-
suming a different formal foundation, the earlier DELPH-IN approach
to disambuation was akin to the use of so-called ‘optimality’ marks in
LFG parsing at the time; Frank et al., 2001). Based on anecdotal ev-
idence, tuning such scoring rules could account for the larger part of
grammar adaptation to a specific genre and domain. Fortunately, the
DELPH-IN software no longer supports this ill-fated method. Instead,
probabilistic parse ranking techniques have been successfully adapted
to unification-based parsing and the DELPH-IN universe. If operating
PET in greedy n-best search today, the agenda scores are based on a
mathematically well-founded statistical model, whose parameters are
learned from treebanks (see Section 1.3 below). However, there are two
inherent limitations in such n-best bottom-up enumeration of candi-
date parses: (i) given the specific properties of the probabilistic models
used, there is no guarantee that the resulting n-best list will reflect
the globally correct rank order; and (ii) it is not quite obvious how to
integrate the scoring of agenda tasks in this fashion with the factoring
(or packing) of local ambiguities.

In recent years, the predominant approach to combining parsing and
disambiguation in PET is thus based on a two-phase approach: first,
a complete packed forest is created, where subsumption-based packing
and TFS restriction can yield a polynomial observed run-time com-
plexity; second, a specialized graph search procedure is applied to the
forest, to selectively enumerate results in exactly the order of their
global probabilities. In analogy to context-free parsing, local ambigu-
ity in the chart (i.e. distinct analyses deriving comparable categories
for the same sub-string) can be ‘packed’ (or factored), to prevent the
proliferation (i.e. cross-multiplication) of such ambiguities. Formally,
edges indexed by sub-string positions in the chart represent nodes in
the derivation tree, recording both a feature structure (the category of
the node) and the identity of the underlying lexical entry or rule in
the grammar.9 Multiple edges derived for identical sub-strings can be

9A frequent source of confusion when discussing ambiguity packing for HPSG

is the relationship between feature structures (as complex categories of nodes in
the derivation tree) and the representation of derivation history. Textbook HPSG

assumes a feature DTRS to record the daughters of a phrase in its TFS (the HPSG

sign); likewise, the implementation of rewrite rules as a single feature structure in
DELPH-IN further blurs the distinction between the local category of a node and its
history of derivation. In chart parsing, however, recording derivation history in the
categories would be both unnecessary and detrimental to local ambiguity packing.
Hence, PET applies feature structure restriction (of the DTRS and ARGS features, as
well as of part of the semantics) to the categories stored on each edge (Shieber, 1985).
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FIGURE 1 Sample (hypothetical) parse forest and sub-node decompositions.

‘packed’ into a single chart entry in case their feature structures are
comparable, i.e. stand in an equivalence or subsumption relation. The
latter, less restrictive test takes advantage of the fact that an edge e1

with a less specific category is guaranteed to derive a superset of edges
derivable from an edge e2 with a more specific category, subsumed by
that of e1. By virtue of having each edge keep back-pointers to its
daughter edges—the immediate sub-nodes in the tree whose combina-
tion resulted in the mother edge—the parse forest provides a complete
and explicit encoding of all possible results in a maximally compact
form.10

Figure 1 shows a hypothetical forest (on the left), where sets of
edges exhibiting local ambiguity have been packed into a single ‘rep-
resentative’ edge, viz. the one typeset in bold in each set. Ovals in
the forest indicate packing of edges under subsumption, i.e. edges 4 ,
7 , 9 , and 11 are not in the chart proper. During unpacking, there
will be multiple ways of instantiating a chart edge, each obtained from
cross-multiplying alternate daughter sequences locally. The elements of
this cross-product are pivotal points both for probabilistic scoring and
dynamic programming in selective unpacking. The table on the right
of Figure 1 shows all non-leaf decompositions for our example packed
forest: given two ways of decomposing 6 , there will be three candidate
ways of instantiating 2 and six for 4 , respectively, for a total of nine
full trees. Oepen and Carroll (2000a) and Zhang et al. (2007) observe
that, for various DELPH-IN grammars, packing under feature structure

This practice resembles the core properties of the linguistic framework proposed by
Sag (2010).

10This property of parse forests is not a prerequisite of the chart parsing frame-
work. The basic CKY procedure (Kasami, 1965), for example, as well as many
unification-based adaptations (e.g. the Core Language Engine; Moore and Alshawi,
1992) merely record the local category of each edge, which is sufficient for the recog-
nition task and simplifies the search. However, reading out complete trees from the
chart, then, amounts to a limited form of search, going back to the rules of the
grammar itself to (re-)discover decomposition relations among chart entries.
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subsumption is much more effective than packing under mere equiva-
lence. Thus, for each pair of edges (over identical sub-strings) that stand
in a subsumption relation, a technique that Oepen and Carroll (2000a)
termed retro-active packing ensures that the more general of the two
edges remains in the chart. When packing under subsumption, how-
ever, parts of the cross-product of local ambiguities in the forest may
not be globally consistent. Assume for example that, in Figure 1, edges
6 and 8 subsume 7 and 9 , respectively; combining 7 and 9 into
the same tree during unpacking can in principle fail. Thus, unpacking
needs to deterministically replay unifications, but this extra expense
in our experience is negligible when compared to the decreased cost of
constructing the forest under subsumption.11

Given the parse forest, a näıve unpacking procedure could be ob-
tained from the cross-multiplication of all local combinatorics, which
would be amenable to standard dynamic programming. However, the
total number of complete analyses can grow exponentially in input
length. Assuming a ranking on the space of candidate analyses (see Sec-
tion 1.3 below), it is often preferable to not unpack exhaustively (and
then rank) but rather seek to selectively enumerate an n-best list of
consistent complete analyses from the forest. Carroll and Oepen (2005)
develop a technique dubbed selective unpacking for this purpose, orig-
inally in the context of surface realization with DELPH-IN grammars.
This technique is equivalent to the (final) algorithm of Huang and Chi-
ang (2005), which was developed contemporaneously—both turn out to
be reformulations of an approach originally described by Jiménez and
Marzal (2000) (albeit for a more restricted class of grammars). At its
core, selective unpacking is a specialized search procedure on a weighted
and | or graph (also called a hypergraph), where for packed nodes (i.e.
disjunctive ‘or’ nodes) local contexts of optimization are established on
demand. Only as much of the local combinatorics is unpacked and eval-
uated as is actually called for in finding the globally best n complete
analyses. Zhang et al. (2007) demonstrate that selective unpacking with
DELPH-IN grammars can be implemented efficiently, adding only over-
head (for small n) to the cost of constructing the parse forest. They
further generalize the algorithm to support a broader class of proba-
bilistic approaches in disambiguation; Section 1.3 below returns to the
interplay of selective unpacking and statistical parse selection.

11Seeing that the forest construction applies feature structure restriction to im-
prove ambiguity packing, in principle even with equivalence-based packing one
would have to resort to original, unrestricted categories anyway; unless of course it
could be guaranteed that the features of the restrictor do not actually constrain the
space of possible derivations.
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# Sample Features

1 �0 sb-hd sp-hd v 3s-fin olr�
1 �1 △ sb-hd sp-hd v 3s-fin olr�
1 �0 sp-hd d - the le n sg ilr�
1 �1 sb-hd sp-hd d - the le n sg ilr�
1 �2 △ sb-hd sp-hd d - the le n sg ilr�
3 �1 n c le dog�
3 �2 d - the le n c le dog�
3 �3 ⊳ d - the le n c le dog�

FIGURE 2 Sample HPSG derivation tree for the sentence the dog barks.

1.3 Disambiguation: Choosing among Alternatives

Whereas grammarians may hold all alternate analyses of ambigu-
ous utterances in equal regard, most practical applications of parsing
require disambiguation (or ranking) among competing alternatives.12

Following Abney (1997) and Johnson et al. (1999), parse selection for
unification-based grammars is typically approached through discrim-
inative (i.e. conditional) Maximum Entropy (or log-linear) statistical
models. Given an utterance s and a set of trees {t1 . . . tn} assigned to
s by the parser, a Maximum Entropy model is defined through a set of
feature functions {f1 . . . fm} with corresponding weights {λ1 . . . λm}.
Thus:

p(ti|s) =
exp

�
j λjfj(ti)

�n

k=1 exp
�

j λjfj(tk)
(1.1)

Feature functions fj can test for arbitrary structural properties of anal-
yses ti, and their value typically is the number of times a specific prop-
erty is present in ti (both the function fj and their values are at times
referred to as just features).

Toutanova et al. (2005) propose an inventory of features that per-
form well in HPSG parse selection; currently PET restricts itself to the
best-performing sub-set of these, of the form illustrated in Figure 2
(on the right). The left-hand side of the same figure shows the ERG

derivation for a short utterance; here, phrasal nodes are labeled with
(only) identifiers of grammar rules, and (pre-terminal) lexical nodes
with class names for types of lexical entries. Formally, the Maximum
Entropy approach allows one to deploy arbitrarily complex and poten-
tially overlapping features of the parse trees (in principle also including

12Furthermore, for genuinely large-coverage grammars like the ERG, the full set
of analyses can count in the hundreds of thousands or millions for longer utterances,
hence would be computationally intractable to enumerate fully.
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properties of the TFS categories, i.e. the full HPSG sign). In practice,
however, feature design needs to balance the ability of properties to
differentiate between ‘preferred’ and ‘dispreferred’ analyses, on the one
hand, with the availability of training data and thus our ability to
estimate the statistics of such properties reliably, on the other hand.
In more than five years of recent research and experimentation, fea-
ture type #1 from Figure 2 has proven most successful. These features
comprise sub-trees of the derivation of depth one—using the grammar-
internal identifiers as node labels—plus optionally a chain of one or
more dominating nodes (i.e. levels of grandparents, where △ depicts
‘pseudo’ parents at the root of the tree). If a grandparent(s) chain is
present then a feature is called non-local, as it exceeds the domain of lo-
cality of a single rewrite rule (such features require special treatment in
selective unpacking; see below). For expository purposes, our example
features include another feature type, n-grams over leaf nodes of the
derivation (where ⊳ is an utterance-initial anchor); such features (and
several other attempts at ‘carving’ up an HPSG analysis) can bring ad-
ditional disambiguation accuracy in some (stand-alone) experiments,
though not sufficiently so to warrant support for these features in PET

so far.
Training a discriminative parse selection model presupposes training

material, i.e. a so-called treebank. To maximize the conditional likeli-
hood of the training data—p(ti|s) for each utterance in the treebank—
both the preferred and dispreferred analyses need to be available for
the estimation of model parameters, i.e. the computation of feature
weights {λ1 . . . λm}. Furthermore, the treebank ideally should disam-
biguate at the same level of linguistic granularity as is assumed in
DELPH-IN grammars; a‘classic’ resource like the Penn Treebank (Mar-
cus et al., 1993), for example, avoids making quite a number of distinc-
tions assumed in HPSG (including a clear argument vs. adjuct contrast,
finer points of subcategorization, NP-internal structure, and others).
For these reasons, the most common type of training material for parse
selection in DELPH-IN are so-called Redwoods-style treebanks (Oepen
et al., 2004; Carter, 1997).

In Redwoods, the treebank is built from full HPSG analyses of a
DELPH-IN grammar, coupled with manual annotation of which tree is
correct. Annotation in Redwoods amounts to disambiguation among
the candidate analyses proposed by the grammar and, of course, ana-
lytical inspection of the final result. To make this task practical, a spe-
cialized tree selection tool extracts a set of so-called discriminants from
the complete set of analyses. Discriminants encode contrasts among al-
ternate analyses—for example whether to treat a word like record as
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nominal or verbal, or where to attach a prepositional phrase modifier.
Whereas picking one full complete analysis (among a set of hundreds
or thousands of trees) would be daunting (to say the least), the iso-
lated contrasts presented as discriminants are comparatively easy to
judge for a human annotator, even with only a limited understanding
of grammar internals. The [incr tsdb()] environment has full support
for the process of parsing a selection of corpora, recording all (or a
sub-set of) analyses, guiding an annotator through discriminant-based
tree selection, and recording all resulting information in its database.
As annotator decisions are recorded as primary data, it is possible to
semi-automatically update a Redwoods-style treebank as the under-
lying grammar evolves. Oepen et al. (2004) suggest that this update
procedure actually contributes very useful information to the grammar
release cycle, and substantial HPSG treebanks are indeed maintained
with each version for several of the DELPH-IN grammars today. The
current ERG, for example, includes some 40,000 annotated utterances
in its Redwoods treebank, drawing from a variety of genres and do-
mains.

Given a treebank, the process of training a parse selection model
is automated in [incr tsdb()] too. The tool supports experimentation
with different data sets and variations of feature types or estimation
hyper-parameters—i.e. the search for the best-performing configura-
tion. For numeric optimization, [incr tsdb()] interfaces with a Maximum
Entropy Learner (TADM; Malouf, 2002) and ultimately can export the
feature types and corresponding weights in a format suitable for on-
line use in PET. The selective unpacking procedure discussed already
in Section 1.2 above maximizes Maximum Entropy scores for compet-
ing sub-structures and guarantees that a globally correct n-best list
is extracted from the parse forest with minimal search. The extension
of Zhang et al. (2007) further enables selective unpacking to correctly
treat grandparenting (i.e. features with an extended domain of locality),
and in principle also lexicalization (features of the form exemplified by
type # 3 in Figure 2 above). The concluding Section below provides
some indication of current parser and disambiguation performance for
the ERG.

1.4 Summary: Lessions Learned This Far

To give an impression of current capabilities (and challenges) in pars-
ing with the ERG, Table 1 provides a summary of grammatical cover-
age, run-time effiency, and disambiguation efficacy for two of the more
complex sub-sets of the Redwoods treebank, viz. the LOGON corpus



Efficient Parsing and Disambiguation for DELPH-IN Grammars / 13

October 20, 2010

Corpus Items Coverage Time Accuracy

LOGON 8573 |732 96 % 1.66 |0.22 52 |83

WeScience 8421 |810 90 % 5.68 |0.78 45 | ??

TABLE 1 Coverage, parser effiency, and disambiguation figures for the ERG.

of tourism brochures and the WeScience excerpt of Wikipedia articles
(with an average sentence length of 13.5 and 17.6 tokens, respectively,
in the test sections). The items column indicates the number of utter-
ances in the development and test sections, respectively, of each cor-
pus; remaining numbers are for the test data. Coverage figures at 90 %
and above (i.e. the percentage of inputs for which the parser found
at least one analysis) on these two corpora is slightly higher than on
truly unseen data (the Redwoods approach to treebanking necessarily
exposes the grammarian to the data to be annotated); for the full En-
glish Wikipedia, for example, parsing coverage was at 85 % (see below);
for the GENIA corpus (Tateisi et al., 2005), it is just below 87 %. Still,
grammatical coverage figures are quite stable nowadays across a wide
variety of genres and domains, which suggests that the ERG core ac-
counts for a high proportion of common syntactic phenomena, and that
the built-in mechanisms for light-weight named entities and unknown
word handling perform effectively.

Parsing times in Table 1 distinguish between the two phases dis-
cussed in Section 1.2 above: construction of the parse forest and selec-
tive unpacking of up to 500 ranked analyses; clearly the cost of enumer-
ation from the forest (even for a relatively large n) is dwarfed by the
time taken to construct the parse forest. The stark contrast in average
parser efficiency between the LOGON and WeScience corpora is in part
owed to the difference in average length, in part to a historical artifact:
work on LOGON predates the addition of unknown word handling, and
the ERG has complete lexical coverage for this data (avoiding the extra
non-determinism contributed by unknown word handling). Finally, the
quality of parse ranking in Table 1 is quantified in the strictest possible
measure, exact match of the HPSG derivation ranked most probable by
the Maximum Entropy model against the gold-standard tree recorded
in the treebank (a random choice baseline would range at well below
ten percent for this metric). The second figure in the accuracy column
attempts to mediate some of the harshness in this measure, counting
a success whenever the correct (i.e. gold-standard) analyses is among
the ten-best candidates according to the parse selection model. The
observation that the exact right tree is on the ten-best list of the model
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in more than eighty percent of cases actually suggests quite high dis-
ambiguation accuracy.

Finally, a recent experiment applied the ERG and PET to the com-
plete English Wikipedia (Flickinger et al., 2010). Despite the relatively
high average cost of parsing a single sentence, it was possible to process
a total of some 55 million sentences (or 900 million tokens) in about
one week (using a commodity HPC cluster). A manual inspection of a
random sample of 1,000 parses (using the principal ERG developer as
an expert, if potentially mildly biased judge) of the quality of the top-
ranked parse for each input found that about two thirds of analyses
were ‘complete correct’ whereas more than 83 % were judged ‘nearly
correct’.13

On the one hand, it is gratifying to confirm that DELPH-IN technol-
ogy can scale to comparatively massive amounts of data, where there
is ample reason to expect that the ERG at least can deliver a good
combination of grammatical coverage (of highly granular analyses) and
disambiguation accuracy. On the other hand, average parse times of sev-
eral seconds per sentence—while sufficient for many applications, po-
tentially including interactive use scenarios—remain a technology bar-
rier to Web-scale application of DELPH-IN parsing technology. While
algorithmic, encoding, and implementation advances were in focus in
the early DELPH-IN days (when HPSG parse times per sentence were at
times measured in minutes rather than seconds), the past decade has
seen more work on linguistic scalability (pushing syntactic and lexical
coverage to practical levels for open-domain running text, and lowering
the cost of grammar engineering for additional languages). From the re-
flections above, it might seem that it is once again time for members of
the DELPH-IN community to put emphasis on improving the core tech-
nology in terms of its computational efficiency (where closely related
efforts have developed a range of promising techniques in recent years;
see Miyao and Tsujii, 2008; Clark and Curran, 2007; inter alios). At the
same time, work on improving the portability across domains and gen-
res (particularly in terms of pre-processing, unknown word handling,
and disambiguation) has gained importance, as it is becoming plausi-
ble to look at a grammar like the ERG as a general-purpose resource,

13For a parse to be judged correct, every aspect of the analysis had to be fully
adequate, including both syntax and semantics. Those items judged as nearly correct
contained one or at most two minor errors which did not materially affect the
overall meaning of the utterance; the errors were typically misbracketing within a
complex nominal compound, misattachment of a modifying prepositional phrase,
or an infelicitous coordination bracketing. If an analysis contained more than two
such minor errors, or a more serious error resulting in substantial damage to the
meaning of the utterance, the parse was judged to be incorrect.
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applicable to quite a range of linguistic data and tasks.
In conclusion, and returning to the spirit of this volume: that

DELPH-IN has come this far is in substantial parts owed to the thriving
eco-system of the collaboration, its spirit of knowledge and resource
sharing, and its long-term vision. These, in turn, strongly reflect the
influence of Hans Uszkoreit throughout the DELPH-IN history this far.
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