Computational Linguistics Volume ??, Number ?

3. Efficient Wide-Coverage Realization

3.1 Chart Initialization

Input to the generator consists of an MRs, i.e. a list of elementary predications (EPs).
A predication’s origin may be a lexeme, as in _athlete_n(z5), or a syntactic rule, such as a
predication expressing apposition. Before syntactic combination can occur, the locations
of the lexemes and rules (henceforth grammar entities or GEs) which will participate in
the procedure must be determined. Wide-coverage grammars offering detailed analy-
ses can support many thousands of elementary predication types (the LinGO ERG has
upwards of 10, 000). Therefore, it is necessary to find the minimal required set of GEs in
an efficient manner.

Semantically Contentful Grammar Entities We construct a semantic index to efficiently
locate GEs as follows: As a preprocessing step, a hash table is constructed associating to
each predication name the complete list of grammar entities which can originate the
corresponding predication. Then at runtime, the system extracts the set of relevant
grammar entities by looking up each predication name in the input MRS.

The problem is somewhat complicated by the fact that predications types are orga-
nized in a heirarchy; for instance in the LinGO ERG we have predsort ;, message_m._rel ,,
prpstn_m_rel. If the input semantics specifies message_m.rel, the generation result must be
a subtype of message_m.rel, but in fact any supertype of message_m.rel can be specialized
into one of its subtypes during unification. Therefore any subtype or supertype of the
supplied predication must be considered a candidate during chart initialization.

The basic data structure of the index is a semantic index predication node or SPN. An
SPN is associated to a particular predication name (e.g. message_m.rel). and contains
pointers the SPNs corresponding to every subtype and supertype of the predication for
ease of access. This basic network of SPNs is constructed directly from the semantic
type heirarchy. A reference to each EP of each GE (lexeme or rule) is then recorded
in the SPN corresponding to that EP. The runtime algorithm to quickly instantiate all
alignments of the GE’s to the input MRSconsists of two phases: activation followed by
enumeration:

e in activation, each EP in the input MRSis looked up in the semantic index. The
resulting SPN is activated by adding a reference to the input EP to the SPN'’s
activation list. Every supertype and every subtype of the predication is also
activated in the same fashion, using the list of related predications stored in the
SPN. A list of activated SPNs is maintained. At this point, every SPN in the
index has an activation list which enumerates the set of input EPs with which
its predication is compatible.

e in enumeration, each GE (say g) of each activated SPN is considered. Since a GE
may introduce multiple predications, we first check that the SPNs correspond-
ing to every predication introduced by g are in fact activated. We then know
that g should be instantiated into the generation chart.

Adding a grammar entry to the chart without specializing it will result in the gen-
eration of many irrelevant output sentences whose semantics are not subsumed by the
input (e.g. “The cat chased the dog.” instead of "The dog chased the cat.”). In gen-
eral the time spent on irrelevant analyses grows exponentially with the number of GEs
added to the chart. Therefore we specialize each GE introduced to correspond to the
constraints required by the input MRS. A more detailed discussion of specialization
follows in Section 3.2 below.

High Efficiency Realization Carroll, Oepen, Velldal, and Packard

If more than one EP in the input MRS has the same predication type, the constraints
will be different, so separate specialized instances of the corresponding GE must be
added to the chart for each EP. We therefore modify the enumeration phase above to
instantiate a specialized copy of g into the chart for each alignment of the EPs introduced
by g with the input MRS. The set of alignments can be efficiently computed as the cross
product over each introduced EP of the union of the activation lists of the SPN for that
EP and the activation lists of all the subtype and supertype SPNs.

Semantically Vacuous Grammar Entities

3.2 Relating Chart Edges and Semantic Components

Once lexical lookup is complete and up until a final, post-generation comparison of
results to the input MRS, the core phases of our generator exclusively operate on typed
feature structures (which are associated to chart edges). For efficiency reasons, our algo-
rithm avoids any complex operations on the original logical-form input MRS. In order
to best guide the search from the input semantics, however, we employ two techniques
that relate components of the logical form to corresponding sub-structures in the feature
structure (FS) universe: (i) Skolemization of variables and (ii) indexing by EP coverage.
Of these, only the latter we find commonly discussed in the literature, but we expect
some equivalent of making variables ground to be present in most implementations.

As part of the process of looking up lexical items and grammar rules introducing se-
mantics in order to initialize the generator chart, all FS correspondences to logical vari-
ables from the input MRS are made ‘ground’ by specializing the relevant sub-structure
with Skolem constants uniquely reflecting the underlying variable, for example adding
constraints like [SKOLEM “x5”] for all occurrences of 5 from our example MRS. Skolem-
ization, thus, assumes that distinct variables from the input MRS, where supplied, can-
not become co-referential during generation. Enforcing variable identity at the FS level
makes sure that composition (by means of FS unification) during rule applications is
compatible to the input semantics. In addition, it enables efficient pre-unification fil-
tering (see ‘quick-check’ below), and is a prerequisite for our index accessibility test
described in Section 3.5 below.

In chart parsing, edges are stored into and retrieved from the chart data structure on
the basis of their string start and end positions. This ensures that the parser will only
retrieve pairs of chart edges that cover compatible segments of the input string (i.e. that
are adjacent with respect to string position). In chart generation, Kay (1996) proposed
indexing the chart on the basis of logical variables, where each variable denotes an indi-
vidual entity in the input semantics, and making the edge coverage compatibility check
a filter. Edge coverage (with respect to the EPs in the input semantics) would be en-
coded as a bit vector, and for a pair of edges to be combined their corresponding bit
vectors would have to be disjoint.

We implement Kay’s edge coverage approach, using it not only when combining
active and inactive edges, but also for two further tasks in our approach to realization:

e in the second phase of chart generation to determine which intersective modi-
fier(s) can be adjoined into a partially incomplete subtree; and

e as part of the test for whether one edge subsumes another, for local ambiguity
factoring (see Section 3.3 below)?.

4We therefore have four operations on bit vectors representing EP coverage (C) in chart edges:
e concatenation of edges e; and e2 — e3: C(e3) = OR(C(e1),C(e2));

e can edges e; and ex combine? AND(C(e1),C(e2)) = 0;

