<div dir="ltr"><div>G'day,</div><div><br></div><div>Please keep <<a href="mailto:developers@delph-in.net">developers@delph-in.net</a>> CCed.</div><div><br></div><div>I think when you mean 'generate MRS' you mean what we generally call 'parse'. </div><div><br></div><div>You need to segment the text before passing it to Jacy. You can do it yourself, or use our script.</div><div> </div><div><div>echo 'どこの出身ですか?' | python utils/jpn2yy.py | ace -g jacy.dat -y1Tf</div></div><div><br></div><div>Here is some documentation: <a href="http://moin.delph-in.net/JacyYYMode">http://moin.delph-in.net/JacyYYMode</a></div><div><br></div><div><br></div><div>How are you making DMRSs? Some of them you said you could not make, it appear that PyDelphin can:</div><div><br></div><div><a href="http://localhost/delphin-viz/demo/#input=%E3%81%8A%E3%81%AF%E3%82%88%E3%81%86&count=5&grammar=jacy-uw&tree=true&mrs=true&dmrs=true">http://localhost/delphin-viz/demo/#input=%E3%81%8A%E3%81%AF%E3%82%88%E3%81%86&count=5&grammar=jacy-uw&tree=true&mrs=true&dmrs=true</a></div><div><br></div><div><br></div><div>I also tested generation:</div><div><br></div><div>I can generate from inp.mrs:</div><div><div> cat ~/Downloads/inp.mrs | ace -e -g jacy.dat </div><div>太郎 が 吠え た</div><div>NOTE: 33 passive, 207 active edges in final generation chart; built 37 passives total. [1 results]</div><div>NOTE: generated 1 / 1 sentences, avg 1735k, time 0.01679s</div><div>NOTE: transfer did 9 successful unifies and 11 failed ones</div></div><div><br></div><div><br></div>And (after segmentation) I can parse and (over) generate for most sentences.<div><br></div><div><div>echo "どこ の 出身 です か ?" | ace -g jacy.dat -T1 | ace -e -g jacy.dat</div><div>NOTE: 1 readings, added 374 / 130 edges to chart (50 fully instantiated, 34 actives used, 27 passives used)<span class="gmail-Apple-tab-span" style="white-space:pre">        </span>RAM: 2002k</div><div>NOTE: parsed 1 / 1 sentences, avg 2002k, time 0.01291s</div><div>何れ の 出身 で ござる か</div><div>何処 の 出身 で ござる か</div><div>いずれ の 出身 で ござる か</div><div>どちら の 出身 で ござる か</div><div>どこ の 出身 で ござる か</div><div>何れ の 出身 かしら か</div><div>何れ の 出身 だい か</div><div>何処 の 出身 かしら か</div><div>何処 の 出身 だい か</div><div>いずれ の 出身 かしら か</div><div>いずれ の 出身 だい か</div><div>どちら の 出身 かしら か</div><div>どちら の 出身 だい か</div><div>どこ の 出身 かしら か</div><div>どこ の 出身 だい か</div><div>何れ の 出身 で ござる</div><div>何処 の 出身 で ござる</div><div>どちら の 出身 で ござる</div><div>いずれ の 出身 で ござる</div><div>どこ の 出身 で ござる</div><div>何れ の 出身 だ か</div><div>何処 の 出身 だ か</div><div>いずれ の 出身 だ か</div><div>どちら の 出身 だ か</div><div>どこ の 出身 だ か</div><div>何れ の 出身 かしら</div><div>何れ の 出身 だい</div><div>何処 の 出身 かしら</div><div>何処 の 出身 だい</div><div>どちら の 出身 かしら</div><div>どちら の 出身 だい</div><div>いずれ の 出身 かしら</div><div>いずれ の 出身 だい</div><div>どこ の 出身 かしら</div><div>どこ の 出身 だい</div><div>何れ の 出身 だ</div><div>何処 の 出身 だ</div><div>どちら の 出身 だ</div><div>いずれ の 出身 だ</div><div>どこ の 出身 だ</div></div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Sat, Nov 5, 2016 at 12:22 PM, Naman Deep Singh <span dir="ltr"><<a href="mailto:nmndeep@gmail.com" target="_blank">nmndeep@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div>Sir, <br></div>I am attaching the files:<br></div>JAPANESE.txt : list of sentences tested by me.<br></div>inp.mrs : MRS genearted from the very first sentence in JAPANESE.txt <br></div>With Regards<div><div class="h5"><br><div class="gmail_extra"><br><div class="gmail_quote">On Sun, Nov 6, 2016 at 12:42 AM, Francis Bond <span dir="ltr"><<a href="mailto:bond@ieee.org" target="_blank">bond@ieee.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">G'day,<div><br></div><div>last time I checked most sentences that we parsed could also generate. Could you send some examples of problematic sentences (and the MRS you used as input)?</div></div><div class="gmail_extra"><div><div class="m_368806947248317998h5"><br><div class="gmail_quote">On Sat, Nov 5, 2016 at 3:36 AM, Naman Deep Singh <span dir="ltr"><<a href="mailto:nmndeep@gmail.com" target="_blank">nmndeep@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div><div><div><div><div><div>Respected Pr. Bond,<br></div><br></div>I am a research intern an International Institute of Information Technology, Hyderabad, India.<br></div>Currently working here in the LTRC lab in Machine Translation, Natural Language Processing.<br></div>We are creating a system for conversion of Indian languages to different languages.<br></div>I am stuck whilst working with JACY- Japanese grammar as the rate of MRS generation of this grammar via ACE parser has been found to be very low.<br></div>In my work this percentage is less than 10%. After a few initial Japanese sentences Mrs generation has seldom been seen to be successful.<br></div>I was wondering there might be an issue here so I am writing you to please help me.<br></div>With Regards<span class="m_368806947248317998m_-2173389883670072555HOEnZb"><font color="#888888"><br></font></span></div><span class="m_368806947248317998m_-2173389883670072555HOEnZb"><font color="#888888">NAMAN DEEP SINGH<br></font></span></div>
</blockquote></div><br><br clear="all"><div><br></div></div></div><span class="m_368806947248317998HOEnZb"><font color="#888888">-- <br><div class="m_368806947248317998m_-2173389883670072555gmail_signature" data-smartmail="gmail_signature">Francis Bond <<a href="http://www3.ntu.edu.sg/home/fcbond/" target="_blank">http://www3.ntu.edu.sg/home/f<wbr>cbond/</a>><br>Division of Linguistics and Multilingual Studies<br>Nanyang Technological University<br></div>
</font></span></div>
</blockquote></div><br></div></div></div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature">Francis Bond <<a href="http://www3.ntu.edu.sg/home/fcbond/" target="_blank">http://www3.ntu.edu.sg/home/fcbond/</a>><br>Division of Linguistics and Multilingual Studies<br>Nanyang Technological University<br></div>
</div>